开发者

Changing user_logic.v for my program

I just made a custom IP in Xilinx it generated a user_logic file which i required in Verilog, but i am having problems changing the code.

What i require is implement that data comes to FSL some addition is performed and then value is returned to MicroBlaze, data is being sent but now being returned.

enter code here
                //----------------------------------------------------------------------------
        // video - module
        //----------------------------------------------------------------------------
        // IMPORTANT:
        // DO NOT MODIFY THIS FILE EXCEPT IN THE DESIGNATED SECTIONS.
        //
        // SEARCH FOR -开发者_JS百科-USER TO DETERMINE WHERE CHANGES ARE ALLOWED.
        //
        // TYPICALLY, THE ONLY ACCEPTABLE CHANGES INVOLVE ADDING NEW
        // PORTS AND GENERICS THAT GET PASSED THROUGH TO THE INSTANTIATION
        // OF THE USER_LOGIC ENTITY.
        //----------------------------------------------------------------------------
        //
        // ***************************************************************************
        // ** Copyright (c) 1995-2008 Xilinx, Inc.  All rights reserved.            **
        // **                                                                       **
        // ** Xilinx, Inc.                                                          **
        // ** XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS"         **
        // ** AS A COURTESY TO YOU, SOLELY FOR USE IN DEVELOPING PROGRAMS AND       **
        // ** SOLUTIONS FOR XILINX DEVICES.  BY PROVIDING THIS DESIGN, CODE,        **
        // ** OR INFORMATION AS ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE,        **
        // ** APPLICATION OR STANDARD, XILINX IS MAKING NO REPRESENTATION           **
        // ** THAT THIS IMPLEMENTATION IS FREE FROM ANY CLAIMS OF INFRINGEMENT,     **
        // ** AND YOU ARE RESPONSIBLE FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE      **
        // ** FOR YOUR IMPLEMENTATION.  XILINX EXPRESSLY DISCLAIMS ANY              **
        // ** WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE               **
        // ** IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR        **
        // ** REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM CLAIMS OF       **
        // ** INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS       **
        // ** FOR A PARTICULAR PURPOSE.                                             **
        // **                                                                       **
        // ***************************************************************************
        //
        //----------------------------------------------------------------------------
        // Filename:          video
        // Version:           1.00.a
        // Description:       Example FSL core (Verilog).
        // Date:              Tue Jul 12 10:03:57 2011 (by Create and Import Peripheral Wizard)
        // Verilog Standard:  Verilog-2001
        //----------------------------------------------------------------------------
        // Naming Conventions:
        //   active low signals:                    "*_n"
        //   clock signals:                         "clk", "clk_div#", "clk_#x"
        //   reset signals:                         "rst", "rst_n"
        //   generics:                              "C_*"
        //   user defined types:                    "*_TYPE"
        //   state machine next state:              "*_ns"
        //   state machine current state:           "*_cs"
        //   combinatorial signals:                 "*_com"
        //   pipelined or register delay signals:   "*_d#"
        //   counter signals:                       "*cnt*"
        //   clock enable signals:                  "*_ce"
        //   internal version of output port:       "*_i"
        //   device pins:                           "*_pin"
        //   ports:                                 "- Names begin with Uppercase"
        //   processes:                             "*_PROCESS"
        //   component instantiations:              "<ENTITY_>I_<#|FUNC>"
        //----------------------------------------------------------------------------

        ////////////////////////////////////////////////////////////////////////////////
        //
        //
        // Definition of Ports
        // FSL_Clk             : Synchronous clock
        // FSL_Rst           : System reset, should always come from FSL bus
        // FSL_S_Clk       : Slave asynchronous clock
        // FSL_S_Read      : Read signal, requiring next available input to be read
        // FSL_S_Data      : Input data
        // FSL_S_Control   : Control Bit, indicating the input data are control word
        // FSL_S_Exists    : Data Exist Bit, indicating data exist in the input FSL bus
        // FSL_M_Clk       : Master asynchronous clock
        // FSL_M_Write     : Write signal, enabling writing to output FSL bus
        // FSL_M_Data      : Output data
        // FSL_M_Control   : Control Bit, indicating the output data are contol word
        // FSL_M_Full      : Full Bit, indicating output FSL bus is full
        //
        ////////////////////////////////////////////////////////////////////////////////

        //----------------------------------------
        // Module Section
        //----------------------------------------
        module video 
        (
            // ADD USER PORTS BELOW THIS LINE 
            // -- USER ports added here 
            // ADD USER PORTS ABOVE THIS LINE 

            // DO NOT EDIT BELOW THIS LINE ////////////////////
            // Bus protocol ports, do not add or delete. 
            FSL_Clk,
            FSL_Rst,
            FSL_S_Clk,
            FSL_S_Read,
            FSL_S_Data,
            FSL_S_Control,
            FSL_S_Exists,
            FSL_M_Clk,
            FSL_M_Write,
            FSL_M_Data,
            FSL_M_Control,
            FSL_M_Full
            // DO NOT EDIT ABOVE THIS LINE ////////////////////
        );

        // ADD USER PORTS BELOW THIS LINE 
        // -- USER ports added here 
        // ADD USER PORTS ABOVE THIS LINE 

        input                                     FSL_Clk;
        input                                     FSL_Rst;
        output                                    FSL_S_Clk;
        output                                    FSL_S_Read;
        input      [0 : 31]                       FSL_S_Data;
        input                                     FSL_S_Control;
        input                                     FSL_S_Exists;
        output                                    FSL_M_Clk;
        output                                    FSL_M_Write;
        output     [0 : 31]                       FSL_M_Data;
        output                                    FSL_M_Control;
        input                                     FSL_M_Full;

        // ADD USER PARAMETERS BELOW THIS LINE 
        // --USER parameters added here 
        // ADD USER PARAMETERS ABOVE THIS LINE


        //----------------------------------------
        // Implementation Section
        //----------------------------------------
        // In this section, we povide an example implementation of MODULE video
        // that does the following:
        //
        // 1. Read all inputs
        // 2. Add each input to the contents of register 'sum' which
        //    acts as an accumulator
        // 3. After all the inputs have been read, write out the
        //    content of 'sum' into the output FSL bus NUMBER_OF_OUTPUT_WORDS times
        //
        // You will need to modify this example for
        // MODULE video to implement your coprocessor

        // Total number of input data.
        localparam NUMBER_OF_INPUT_WORDS  = 64;

        // Total number of output data
        localparam NUMBER_OF_OUTPUT_WORDS = 64;

        // Define the states of state machine
        localparam Idle  = 3'b100;
        localparam Read_Inputs = 3'b010;
        localparam Write_Outputs  = 3'b001;

        reg [0:2] state;

        // Accumulator to hold sum of inputs read at any point in time
        reg [0:31] sum;

        // Counters to store the number inputs read & outputs written
        reg [0:NUMBER_OF_INPUT_WORDS - 1] nr_of_reads;
        reg [0:NUMBER_OF_OUTPUT_WORDS - 1] nr_of_writes;

        // CAUTION:
        // The sequence in which data are read in should be
        // consistent with the sequence they are written in the
        // driver's video.c file

        assign FSL_S_Read  = (state == Read_Inputs) ? FSL_S_Exists : 0;
        assign FSL_M_Write = (state == Write_Outputs) ? ~FSL_M_Full : 0;

        assign FSL_M_Data = sum;

        always @(posedge FSL_Clk) 
        begin  // process The_SW_accelerator
          if (FSL_Rst)               // Synchronous reset (active high)
            begin
               // CAUTION: make sure your reset polarity is consistent with the
               // system reset polarity
               state        <= Idle;
               nr_of_reads  <= 0;
               nr_of_writes <= 0;
               sum          <= 0;
            end
          else
            case (state)
              Idle: 
                if (FSL_S_Exists == 1)
                begin
                  state       <= Read_Inputs;
                  nr_of_reads <= NUMBER_OF_INPUT_WORDS - 1;
                  sum         <= 0;
                end

              Read_Inputs: 
                if (FSL_S_Exists == 1) 
                begin
                  // Coprocessor function (Adding) happens here
                  sum         <= sum + FSL_S_Data;
                  if (nr_of_reads == 0)
                    begin
                      state        <= Write_Outputs;
                      nr_of_writes <= NUMBER_OF_OUTPUT_WORDS - 1;
                    end
                  else
                    nr_of_reads <= nr_of_reads - 1;
                end

              Write_Outputs: 
                if (nr_of_writes == 0) 
                  state <= Idle;
                else
                  if (FSL_M_Full == 0)  nr_of_writes <= nr_of_writes - 1;
            endcase
        end

        endmodule


You need to instantiate this module in user_logic and then create a register to store the result. You can also provide a status register or something along those lines to indicate to the microblaze that the result is ready to be read. The microblaze would then read the read the register to get the result. The address the microblaze reads will depend on how you configure your memory map.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜