开发者

python数据拟合之scipy.optimize.curve_fit解读

目录
  • scipy.optimize.curve_fit解读
  • 总结

scipy.optimize.curve_fit解读

相比numpy库的多项式拟合函数polyfit,scipy.optimize模块中的函数curve_fit能够拟合的函数范围更广,不局限于多项式函数

已有数据

javascript

python数据拟合之scipy.optimize.curve_fit解读

# 导入模块
import numandroidpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
# 导入数据
x = np.linspace(0,1.0js,11)
y = np.arra编程客栈y([-0.447, 1.978, 3.28, 6.16, 7.08, 7.34, 7.66, 9.56, 9.48, 9.30, 11.2])
# 拟合二次多项式
f = lambda x, a, b, c: a*x**2 + b*x + c
 
# popt为拟合参数,pcov为参数的协方差矩阵
popt, pcov = curve_fit(f, x, y)
print("拟合的参数值a,b,c分别为:", popt)
 
# x=0.25, 0YPPGBqBc.35的预测值
print("x=0开发者_Js入门.25, 0.35的预测值为", f(np.array([0.25, 0.35]), *popt))

拟合的参数值a,b,c分别为: [-9.81083901 20.12929291 -0.03167108]

x=0.25, 0.35的预测值为 [4.38747471 5.81175366]

plt.rc('font', size=15)
plt.plot(x, y, '*')    # 观测值数据的散点图
# 拟合数据的折线图
plt.plot(np.linspace(0.0, 1.0, 50), f(np.linspace(0.0, 1.0, 50), *popt), '-')
plt.show()

python数据拟合之scipy.optimize.curve_fit解读

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜