开发者

Increasing speed of python list operations and comparisons in a custom table class

I'm using the following class to create a table and I need to find a way to not only make it faster but make interactions with it faster:

class Table(object):
    """a three dimensional table object"""
    def __init__(self, xsize=1, ysize=1, zsize=1):
        self.xsize = xsize
        self.ysize = ysize
        self.zsize = zsize
        self.data = [0] * (xsize * ysize * zsize)

    def __getitem__(self, key):
        x, y, z = self.__extractIndices(key)
        return self.data[x + self.xsize * (y + self.ysize * z)]

    def __setitem__(self, key, value):
        x, y, z = self.__extractIndices(key)
        self.data[x + self.xsize * (y + self.ysize * z)] = value

    def __extractIndices(self, key):
        x = y = z = 0
        if (self.ysize > 1):
            if (self.zsize > 1):
                if len(key) != 3:
                    raise IndexError
                else:
                    x, y, z = key
            elif len(key) != 2:
                raise IndexError
            else:
                x, y = key
        elif not isinstance(key, int):
            raise IndexError
        else:
            x = key
        return (x, y, z)

    def resize(self, xsize=1, ysize=1, zsize=1):
        """resize the table preserving data"""
        oldlist = list(self.data)
        self.data = [0] * (xsize * ysize * zsize)
        self.xsize = xsize
        self.ysize = ysize
        self.zsize = zsize
        for i in range(0, oldlist):
            self.data[1] = oldlist[i]

at on point I need to find if the data in two lists is equivalent of each of the z's so I did this. self.data and self.map.data are table class instances from above

    for x in range(self.map.width - 1):
        for y in range(self.map.height - 1):
            tempflag = False
            #layer 1
            if self.data[x, y, 0] != self.map.data[x, y, 0]:
                tempflag = True
                layer1flag = True
            #layer 2
            if self.data[x, y, 1] != self.map.data[x, y, 1]:
                tempflag = True
                layer2flag = True
            #layer 3
            if self.data[x, y, 2] != self.map.data[x, y, 2]:
                tempflag = True
                layer3flag = True
            #开发者_开发问答copy the data if it changed
            if tempflag:
                self.data = copy.deepcopy(self.map.data)
                previewflag = True

clearly this is the slowest way I could conceivably do this and considering that some of these tables I'm comparing have a size of 200 * 200 * 3 = 120,000 entries. I NEED this to be as fast as possible.

I've considered rewriting the above comparison to slice all the entries for one z like so

tempflag = False
#layer 1
slicepoint1 = 0
slicepoint2 = self.data.xsize * self.data.ysize * 1
data1 = self.data.data[slicepoint1:slicepoint2]
data2 = self.map.data.data[slicepoint1:slicepoint2]
if data1 != data2:
    tempflag = True
    layer1flag = True
#layer 2
slicepoint1 = self.data.xsize * self.data.ysize * 1
slicepoint2 = self.data.xsize * self.data.ysize * 2
data1 = self.data.data[slicepoint1:slicepoint2]
data2 = self.map.data.data[slicepoint1:slicepoint2]
if data1 != data2:
    tempflag = True
    layer2flag = True
#layer 3
slicepoint1 = self.data.xsize * self.data.ysize * 2
slicepoint2 = self.data.xsize * self.data.ysize * 3
data1 = self.data.data[slicepoint1:slicepoint2]
data2 = self.map.data.data[slicepoint1:slicepoint2]
if data1 != data2:
    tempflag = True
    layer3flag = True
#copy the data if it changed
if tempflag:
    self.data = copy.deepcopy(self.map.data)
    previewflag = True

and while this seems like it would go faster it still seems like it's could be significantly improved. for example could a not use numpy to build the data list inside the Table class?

I need this class and this check to run as fast as it possibly can

it would also be nice if the use of numpy would allow me to loop through the table really fast so I could use the data in it for blit operations to build a tilemap

I do need to keep the general interface of the table class particularly the fact that the table data is stored in self.data

In summary Can the speed of the operations be increased by using numpy? If so how can I do it?


I think yes, by using numpy you can probably gain alot of speed.

Not only can you make slices but you can make rectangular, and probably cubic slices too, example:

>>> a = numpy.array([[1,2,3],[4,5,6],[7,8,9]])
>>> a[:2,1:]
array([[2, 3],
       [5, 6]])

I'm not sure what you want to accomplish but you can also easily compare numpy arrays elementwise:

>>> numpy.array([1,2,3])==numpy.array([9,2,3])
array([False,  True,  True], dtype=bool)

If you got more questions don't hesitate to comment.


This is definitely an application for NumPy! It will not only speed up your code, it will also simplify your code considerably, because indexing and comparison are already handled by NumPy. You will have to read some tutorial to learn NumPy -- just a few hints to get you going in this case.

Usually, I would simply derive from numpy.ndarray to define a custom array class, but you stated that you definitely need the data attribute, which clashes with numpy.ndarray.data. Your class simplifies to

class Table(object):
    def __init__(self, xsize=1, ysize=1, zsize=1):
        self.data = numpy.zeros((xsize, ysize, zsize))

    def __getitem__(self, key):
        return self.data[key]

    def __setitem__(self, key, value):
        self.data[key] = value

    def resize(self, xsize=1, ysize=1, zsize=1):
        # This only works for increasing the size of the data,
        # but is easy do adapt to other cases
        newdata = numpy.zeros((xsize, ysize, zsize))
        shape = self.data.shape
        newdata[:shape[0], :shape[1], :shape[2]] = self.data
        self.data = newdata

Your comparison code simplifies to

eq = self.data == self.data.map
layerflags = eq.reshape(-1, 3).any(axis=0)
if layerflags.any():
    self.data[:] = self.map.data

And it will be much faster too!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜