How does numpy zeros implement the parameter shape?
I want to implement a similar function, and want to accept an array or number that I pass to numpy.ones
.
Specifically, I want to do this:
def halfs(shape):
shape = numpy.concatenate([2], shape)
return 0.5 * numpy.ones(shape)
Example input-output pairs:
# default
In [5]: beta_jeffreys()
Out[5]: array([-0.5, -0.5])
# scalar
In [5]: beta_jeffreys(3)
Out[3]:
array([[-0.5, -0.5, -0.5],
[-0.5, -0.5, -0.5]])
# vector (1)
In [3]: beta_jeffreys((3,))
Out[3]:
array([[-0.5, -0.5, -0.5],
[-0.开发者_开发技巧5, -0.5, -0.5]])
# vector (2)
In [7]: beta_jeffreys((2,3))
Out[7]:
array([[[-0.5, -0.5, -0.5],
[-0.5, -0.5, -0.5]],
[[-0.5, -0.5, -0.5],
[-0.5, -0.5, -0.5]]])
def halfs(shape=()):
if isinstance(shape, tuple):
return 0.5 * numpy.ones((2,) + shape)
else:
return 0.5 * numpy.ones((2, shape))
a = numpy.arange(5)
# array([0, 1, 2, 3, 4])
halfs(a.shape)
#array([[ 0.5, 0.5, 0.5, 0.5, 0.5],
# [ 0.5, 0.5, 0.5, 0.5, 0.5]])
halfs(3)
#array([[ 0.5, 0.5, 0.5],
# [ 0.5, 0.5, 0.5]])
精彩评论