Initialize class but with different parents in python
In python, is there a way, when initializing a Class, to change the superclass in function of the value of a class attribute? Here's an example of what I want to do. First I have theses classes:
class A(object):
pass
class B(A):
# extend and override class A
pass
class C(A or B):
# extend and override class A
pass
Secondly, I want to create other classes that inherit from Class C
but in some cases I want C to inherit from A and on other cases, inherit from B:
class D(C):
# C inherit only from A
from_B = False
class E(C):
# C inherit from B because attribute from_B = True
from_B = True
I tried with metaclass but that was setting the base class of C
(to A
or B
) for all subclasses (D
, E
, ...) at the initialization of the first subclass. So, if the first subclass to be initialize had from_B = True
, all subclasses of C
had C(B)
as parent whatever from_B
was set. My code was something like this:
class MetaC(type):
def __new__(cls, name, bases, attrs):
if C in bases and getattr(attrs, 'from_B', False):
C.__bases__[C.__bases__.index(A)] = B
return super(MetaC, cls).__new__(cls, name, bases, attrs)
class C(A):
__metaclass__ = MetaC
My goal is to avoid the duplication of the code of the C
class and keeping the possibility to have or not the added functionalities of the B
class. I should mention that I don't have control on A
and B
classes.
UPDATE
I think I got it with this metaclass (code is a bit rough at the moment):
class MetaC(type):
def __new__(cls, name, bases, attrs):
for base in bases:
if base.__name__ == 'C':
if attrs.has_key('from_B'):
list_bases = list(base.__bases__)
list_bases[list_bases.index(A)] = B
base.__bases__ = tuple(list_bases)
elif B in base.__bases__:
list_bases = list(base.__bases__)
list_bases[list_bases.index(B)] = A
base.__bases__ = tuple(list_bases)
break
return super(MetaC, cls).__new__(cls, name, bases, attrs)
UPDATE 开发者_StackOverflow2
This solution doesn't work because I'm always modifying the base class C. So, when a subclass is instanciated it will use the C class in it's current state.
I ended by using cooperative multiple inheritance. It works fine. The only drawback is that we need to be sure that for methods that need to be call on many parent classes (like methods that are present in A
and B
and C
), there's a super()
call in each method definitions of each classes and that they have the same calling signature in every case. Fortunately for me my B
classes respect this.
Example:
class A(object):
some_method(arg1, arg2, karg1=None):
do_some_stuff(arg1, arg2, karg1)
class B(A):
# extend and override class A
some_method(arg1, arg2, karg1=None):
super(B, self).some_method(arg1, arg2, karg1)
do_more_stuff(arg1, arg2, karg1)
class C(A, B):
# extend and override class A
some_method(arg1, arg2, karg1=None):
do_other_stuff(arg1, arg2, karg1)
super(C, self).some_method(arg1, arg2, karg1)
This way, when some_method
will be call from C
or C
childrens, all theses calls will be made in this order:
- C.some_method
- A.some_method
- B.some_method
Check The wonders of cooperative inheritance for more info on the subject.
This looks so painful, you have to consider composition/delegation instead of contorting inheritance this way. What do you think of something like this?
class A(object):
def from_B(self):
return False
class B(object):
def from_B(self):
return True
class C(object):
pass
class PolyClass(object):
def __init__(self, *args):
self.delegates = [c() for c in args[::-1]]
def __getattr__(self, attr):
for d in self.delegates:
if hasattr(d, attr):
return getattr(d,attr)
raise AttributeError(attr + "? what the heck is that?")
def __repr__(self):
return "<instance of (%s)>" % ','.join(d.__class__.__name__
for d in self.delegates[::-1])
pc1 = PolyClass(A,B)
pc2 = PolyClass(A,C)
pc3 = PolyClass(B,C)
for p in (pc1,pc2,pc3):
print p, p.from_B()
print pc1.from_C()
Prints:
<instance of (A,B)> True
<instance of (A,C)> False
<instance of (B,C)> True
Traceback (most recent call last):
File "varying_delegation.py", line 33, in <module>
print pc1.from_C()
File "varying_delegation.py", line 21, in __getattr__
raise AttributeError(attr + "? what the heck is that?")
AttributeError: from_C? what the heck is that?
EDIT: Here's how to take the not-in-your-control classes A and B, and create custom C classes that look like they extend either an A or a B:
# Django admin classes
class A(object):
def from_B(self):
return False
class B(A):
def from_B(self):
return True
# Your own class, which might get created with an A or B instance
class C(object):
def __init__(self, obj):
self.obj = obj
def __getattr__(self, attr):
return getattr(self.obj, attr)
# these are instantiated some way, not in your control
a,b = A(), B()
# now create different C's
c1 = C(a)
c2 = C(b)
print c1.from_B()
print c2.from_B()
prints:
False
True
And to create your subclasses D and E, create an interim subclass of C (I called it SubC cause I lack imagination), which will auto-init the C superclass with a specific global variable, either a or b.
# a subclass of C for subclasses pre-wired to delegate to a specific
# global object
class SubC(C):
c_init_obj = None
def __init__(self):
super(SubC,self).__init__(self.c_init_obj)
class D(SubC): pass
class E(SubC): pass
# assign globals to C subclasses so they build with the correct contained
# global object
D.c_init_obj = a
E.c_init_obj = b
d = D()
e = E()
print d.from_B()
print e.from_B()
Again, prints:
False
True
精彩评论