开发者

一小时学会TensorFlow2之Fashion Mnist

目录
  • 描述
  • Tensorboard
    • 创建 summary
    • 存入数据
  • metrics
    • metrics.Mean()
    • metrics.Accuracy()
    • 变量更新 &重置
  • 案例
    • pre_process 函数
    • get_data 函数
    • train 函数
    • test 函数
    • main 函数
    • 完整代码
    • 可视化

描述

Fashion Mnist 是一个类似于 Mnist 的图像数据集. 涵盖 10 种类别的 7 万 (6 万训练集 + 1 万测试集) 个不同商品的图片.

一小时学会TensorFlow2之Fashion Mnist

Tensorboard

Tensorboard 是 tensorflow 的一个可视化工具.

一小时学会TensorFlow2之Fashion Mnist

创建 summary

我们可以通过tf.summary.create_file_writer(file_path)来创建一个新的 summary 实例.

例子:

# 将当前时间作为子文件名
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")

# 监听的文件的路径
log_dir = 'logs/' + current_time

# 创建writer
summary_writer = tf.summary.create_file_writer(log_dir)

存入数据

通过tf.summary.scalar我们可以向 summary 对象存入数据.

格式:

tf.summary.scalar(
    name, data, step=None, description=None
)

例子:

with summary_writer.as_default():
    tf.summary.scalar("train-loss", float(Cross_Entropy), step=step)

metrics

一小时学会TensorFlow2之Fashion Mnist

metrics.Mean()

metrics.Mean()可以帮助我们计算平均数.

格式:

tf.keras.metrics.Mean(
    name='mean', dtype=None
)

例子:

# 准确率表
loss_meter = tf.keras.metrics.Mean()

metrics.Accuracy()

格式:

tf.keras.metrics.Accuracy(
    name='accuracy', dtype=None
)

例子:

# 损失表
acc_meter = tf.keras.metrics.Accuracy()

变量更新 &重置

我们可以通过update_state来实现变量更新, 通过rest_state来实现变量重置.

例如:

# 跟新损失
loss_meter.update_state(Cross_Entropy)

# 重置
loss_meter.reset_state()

案例

pre_process 函数

def pre_process(x, y):
    """
    数据预处理
    :param x: 特征值
    :param y: 目标值
    :return: 返回处理好的x, y
    """
    # 转换x
    x = tf.cast(x, tf.float32) / 255
    x = tf.reshape(x, [-1, 784])

    # 转换y
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)

    return x, y

get_data 函数

def get_data():
    """
    获取数据
    :return: 返回分批完的训练集和测试集
    """

    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_process)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_process)

    # 返回
    return train_db, test_db

train 函数

def train(epoch, train_db):
    """
    训练数据
    :param train_db: 分批的数据集
    :return: 无返回值
    """
    for step, (x, y) in enumerate(train_db):
        with tf.GradientTape() as tape:

            # 获取模型输出结果
            logits = model(x)

            # 计算交叉熵
            Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)
            Cross_Entropy = tf.reduce_sum(Cross_Entropy)

            # 跟新损失
            loss_meter.update_state(Cross_Entropy)

        # 计算梯度
        grads = tape.gradient(Cross_Entropy, model.trainable_variables)

        # 跟新参数
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        # 每100批调试输出一下误差
        if step % 100 == 0:
            print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())

            # 重置
            loss_meter.reset_state()

            # 可视化
            with summary_writer.as_default():
                tf.summary.scalar("train-loss", float(Cross_Entropy), step= epoch * 235 + step)

test 函数

def test(epoch, test_db):
    """
    测试模型
    :param epoch: 轮数
    :param test_db: 分批的测试集
    :return: 无返回值
    """

    # 重置
    acc_meter.reset_state()

    for x, y in test_db:
        # 获取模型输出结果
        logits = model(x)

        # 预测结果
        pred = tf.argmax(logits, axis=1)

        # 从one_hot编码变回来
        y = tf.argmax(y, axis=1)

        # 计算准确率
        acc_meter.update_state(y, pred)

    # 调试输出
    print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )

    # 可视化
    with summary_writer.as_default():
        tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)

main 函数

def main():
    """
    主函数
    :return: 无返回值
    """

    # 获取数据
    train_db, test_db = get_data()

    # 轮期
    for epoch in range(iteration_num):
        train(epoch, train_db)
        test(epoch, test_db)

完整代码

import datetime
import tensorflow as tf

# 定义超参数
batch_size = 256  # 一次训练的样本数目
learning_rate = 0.001  # 学习率
iteration_num = 20  # 迭代次数

# 优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

# 准确率表
loss_meter = tf.keras.metrics.Mean(http://www.cppcns.com)

# 损失表
acc_meter = tf.keras.metrics.Accuracy()

# 可视化
current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = 'lwww.cppcns.comogs/' + current_time
summary_writer = tf.summary.create_file_writer(log_dir)  # 创建writer

# 模型
model = tf.keras.Sequential([
    tf.keras.layers.Dense(256, activation=tf.nn.relu),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(32, activation=tf.nn.relu),
    tf.keras.layers.Dense(10)
])

# 调试输出summary
model.build(input_shape=[None, 28 * 28])
print(model.summary())


def pre_process(x, y):
    """
    数据预处理
    :param x: 特征值
    :param y: 目标值
    :return: 返回处理好的x, y
    """
    # 转换x
    x = tf.cast(x, tf.float32) / 255
    x = tf.reshape(x, [-1, 784])

    # 转换y
    y = tf.cast(y, dtype=tf.int32)
    y = tf.one_hot(y, depth=10)

    return x, y


def get_data():
    """
    获取数据
    :return: 返回分批完的训练集和测试集
    """

    # 获取数据
    (X_train, y_train), (X_test, y_test) = tf.keras.datasets.fashion_mnist.load_data()

    # 分割训练集
    train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(60000, seed=0)
    train_db = train_db.batch(batch_size).map(pre_process)

    # 分割测试集
    test_db = tf.data.Dataset.from_tensor_slices((X_test, y_testwww.cppcns.com)).shuffle(10000, seed=0)
    test_db = test_db.batch(batch_size).map(pre_process)

    # 返回
    return train_db, test_db


def train(epoch, train_db):
    """
    训练数据
    :param train_db: 分批的数据集
    :return: 无返回值
    """
    for step, (x, y) in enumerate(train_db):
        with tf.GradientTape() as tape:

            # 获取模型输出结果
            logits = model(x)

            # 计算交叉熵
            Cross_Entropy = tf.losses.categorical_crossentropy(y, logits, from_logits=True)
            Cross_Entropy = tf.reduce_sum(Cross_Entropy)

            # 跟新损失
            loss_meter.update_state(Cross_Entropy)

        # 计算梯度
        grads = tape.gradient(Cross_Entropy, model.trainable_variables)

        # 跟新参数
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

        # 每100批调试输出一下误差
        if step % 100 == 0:
            print("step:", step, "Cross_Entropy:", loss_meter.result().numpy())

            # 重置
            loss_meter.reset_state()

            # 可视化
            with summary_writer.as_default():
                tf.summary.scalar("train-loss", float(Cross_Entropy), step=epoch * 235 + step)


def test(epoch, test_db):
    """
    测试模型
    :param epoch: 轮数
    :param test_db: 分批的测试集
    :return: 无返回值
    """

    # 重置
    acc_meter.reset_state()

    for x, y in test_db:
        # 获取模型输出结果
        logits = model(x)

        # 预测结果
        pred = tf.argmax(logits, axis=1)

        # 从one_hot编码变回来
        y = tf.argmax(y, axis=1)

        # 计算准确率
        acc_meter.update_state(y, pred)

    # 调试输出
    print("epoch:", epoch + 1, "Accuracy:", acc_meter.result().numpy() * 100, "%", )

    # 可视化
    with summary_writer.as_default():
        tf.summary.scalar("val-acc", acc_meter.result().numpy(), step=epoch * 235)


def main():
    """
    主函数
    :return: 无返回值
    """

    # 获取数据
    train_db, test_db = get_data()

    # 轮期
    for epoch in range(iteration_num):
        train(epoch, train_db)
        test(epoch, test_db)


if __name__ == "__main__":
    main()

输出结果:

Model: "sequential"

_________________________________________________________________

Layer (type) Output Shape Param #

=================================================================

dense (Dense) (None, 256) 200960

_________________________________________________________________

dense_1 (Dense) (None, 128) 32896

_________________________________________________________________

dense_2 (Dense) (None, 64) 8256

_________________________________________________________________

dense_3 (Dense) (None, 32) 2080

_________________________________________________________________

dense_4 (Dense) (None, 10) 330

=================================================================

Total params: 244,522

Trainable params: 244,522

Non-trainable params: 0

_________________________________________________________________

None

2021-06-14 18:01:27.399812: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)

step: 0 Cross_Entropy: 591.5974

step: 100 Cross_Entropy: 196.49309

step: 200 Cross_Entropy: 125.2562

epoch: 1 Accuracy: 84.72999930381775 %

step: 0 Cross_Entropy: 107.64579

step: 100 Cross_Entropy: 105.854385

step: 200 Cross_Entropy: 99.545975

epoch: 2 Accuracy: 85.83999872207642 %

step: 0 Cross_Entropy: 95.42945

step: 100 Cross_Entropy: 91.366234

step: 200 Cross_Entropy: 90.84072

epoch: 3 Accuracy: 86.69999837875366 %

step: 0 Cross_http://www.cppcns.comEntropy: 82.03317

step: 100 Cross_Entropy: 83.20552

step: 200 Cross_Entropy: 81.57012

epoch: 4 Accuracy: 86.11000180244446 %

step: 0 Cross_Entropy: 82.94046

step: 100 Cross_Entropy: 77.56677

step: 200 Cross_Entropy: 76.996346

epoch: 5 Accuracy: 87.27999925613403 %

step: 0 Cross_Entropy: 75.59219

step: 100 Cross_Entropy: 71.70899

step: 200 Cross_Entropy: 74.15144

epoch: 6 Accuracy: 87.29000091552734 %

step: 0 Cross_Entropy: 76.65844

step: 100 Cross_Entropy: 70.09151

step: 200 Cross_Entropy: 70.84446

epoch: 7 Accuracy: 88.27999830245972 %

step: 0 Cross_Entropy: 67.50707

step: 100 Cross_Entropy: 64.85907

step: 200 Cross_Entropy: 68.63099

epoch: 8 Accuracy: 88.41999769210815 %

step: 0 Cross_Entropy: 65.50318

step: 100 Cross_Entropy: 62.2706

step: 200 Cross_Entropy: 63.80803

epoch: 9 Accuracy: 86.21000051498413 %

step: 0 Cross_Entropy: 66.95486

step: 100 Cross_Entropy: 61.84385

step: 200 Cross_Entropy: 62.18851

epoch: 10 Accuracy: 88.45999836921692 %

step: 0 Cross_Entropy: 59.779297

step: 100 Cross_Entropy: 58.602314

step: 200 Cross_Entropy: 59.837025

epoch: 11 Accuracy: 88.66000175476074 %

step: 0 Cross_Entropy: 58.10068

step: 100 Cross_Entropy: 55.097878

step: 200 Cross_Entropy: 59.906315

epoch: 12 Accuracy: 88.70999813079834 %

step: 0 Croshttp://www.cppcns.coms_Entropy: 57.584858

step: 100 Cross_Entropy: 54.95376

step: 200 Cross_Entropy: 55.797752

epoch: 13 Accuracy: 88.44000101089478 %

step: 0 Cross_Entropy: 53.54782

step: 100 Cross_Entropy: 53.62939

step: 200 Cross_Entropy: 54.632828

epoch: 14 Accuracy: 87.02999949455261 %

step: 0 Cross_Entropy: 54.387398

step: 100 Cross_Entropy: 52.323734

step: 200 Cross_Entropy: 53.968185

epoch: 15 Accuracy: 88.98000121116638 %

step: 0 Cross_Entropy: 50.468914

step: 100 Cross_Entropy: 50.79311

step: 200 Cross_Entropy: 51.296227

epoch: 16 Accuracy: 88.67999911308289 %

step: 0 Cross_Entropy: 48.753258

step: 100 Cross_Entropy: 46.809692

step: 200 Cross_Entropy: 48.08208

epoch: 17 Accuracy: 89.10999894142151 %

step: 0 Cross_Entropy: 46.830627

step: 100 Cross_Entropy: 47.208813

step: 200 Cross_Entropy: 48.671318

epoch: 18 Accuracy: 88.77999782562256 %

step: 0 Cross_Entropy: 46.15514

step: 100 Cross_Entropy: 45.026627

step: 200 Cross_Entropy: 45.371685

epoch: 19 Accuracy: 88.7399971485138 %

step: 0 Cross_Entropy: 47.696465

step: 100 Cross_Entropy: 41.52749

step: 200 Cross_Entropy: 46.71362

epoch: 20 Accuracy: 89.56000208854675 %

可视化

一小时学会TensorFlow2之Fashion Mnist

一小时学会TensorFlow2之Fashion Mnist

一小时学会TensorFlow2之Fashion Mnist

到此这篇关于一小时学会TensorFlow2之Fashion Mnist的文章就介绍到这了,更多相关TensorFlow2 Fashion Mnist内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜