开发者

pytorch中的 .view()函数的用法介绍

目录
  • 一、普通用法(手动调整size)
  • 二、特殊用法:参数-1(自动调整size)

一、普通用法 (手动调整size)

view()相当于reshape、resize,重新调整Tensor的形状。

import torch
a1 = torch.arange(0,16)
print(a1)
# tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10www.cppcns.com, 11, 12, 13, 14, 15])
a2 = a1.view(8, 2)
a3 = a1.view(2, 8)
a4 = a1.view(4, 4)
print(a2)
#tensor([[ 0, 1],
#    [ 2, 3],
#    [ 4, 5],
#    [ 6, 7],
#    [ 8, 9],
#    [1编程客栈0, 11],
#    [12, 13],
#    [14, 15]])
print(a3)
#tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],
#    [ 8, 9, 10, 11, 12, 13, 14, 15]])
print(a4)
#tensor([[ 0, 1, 2, 3],
#    [ 4, 5, 6, 7],
#    [ 8, 9, 10, 11],
#    [12, 13, 14, 15]])

二、特殊用法:参数-1 (自动调整size)

view中NPXLfz一个参数定为-1,代表自动调整这个维度上的元素个数,以保www.cppcns.com证元素的总数不变。

v1 = torch.arange(0,16)
print(v1)
# tensor([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15])
v2 = v1.view(-1, 16)
v2
# tensor([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]])
v2 = v1.view(-1, 8)
v2
# tensor([[ 0, 1, 2, 3, 4, 5, 6, 7],
#     [ 8, 9, 10, 11, 12, 13, 14编程客栈, 15]])
v2 = v1.view(-1, 4)
v2
#tensor([[ 0, 1, 2, 3],
#    [ 4, 5, 6, 7],
#    [ 8, 9, 10, 11],
#    [12, 13, 14, 15]])
v2 = v1.view(-1, 2)
v2
#tensor([[ 0, 1],
#    [ 2, 3],
#    [ 4, 5],
#    [ 6, 7],
#    [ 8, 9],
#    [10, 11],
#    [12, 13],
#    [14, 15]])
v3 = v1.view(4*4, -1)
v3
# tensor([[ 0],
#     [ 1],
#     [ 2],
#     [ 3],
#     [ 4],
#     [ 5],
#     [ 6],
#     [ 7],
#     [ 8],
#     [ 9],
#     [10],
#     [11],
#     [12],
#     [13],
#     [14],
#     [15]])

到此这篇关于pytorch中的 .view()函数的用法介绍的文章就介绍到这了,更多相关pytorch .view()函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜