开发者

3D Trilateration using given distances of unknown fixed points

I am new to this forum and not a native english speaker, so please be nice! :)

Here is the challenge I face at the moment: I want to calculate the (approximate) relative coordinates of yet unknown points in a 3D euclidean space based on a set of given distances between 2 points. In my first approach I want to ignore possible multiple solutions, just taking the first one by random.

e.g.: given set of distances: (I think its creating a pyramid with a right-angled triangle as a base)

P1-P2-Distance

Step1: Now, how do I calculate the relative coordinates for those points?

I figured that the first point goes to 0,0,0 so the second one is 30,0,0.

After that the third points can be calculated by finding the crossing of the 2 circles from points 1 and 2 with their distances to point 3 (50 and 40 respectively). How do I do that mathematically? (though I took these simple numbers for an easy representation of the situation in my mind). Besides I do not know how to get to the answer in a correct mathematical way the third point is at 30,40,0 (or 30,0,40 but i will ignore that).

But getting the fourth point is not as easy as that. I thought I have to use 3 spheres in calculate the crossing to get the point, but how do I do that?

Step2: After I figured out how to calculate this "simple" example I want to use more unknown points... For each point there is minimum 1 given distance to another point to "link" it to the others. If the coords can not be calculated because of its degrees of freedom I want to ignore all possibilities except one I choose randomly, but with respect to the known distances.

Step3: Now the final stage should be this: Each measured distance is a bit incorrect due to real life situation. So if there are more then 1 distances for a given pair of points the distances are averaged. But due to the imprecise distances there can be a difficulty when determining the exact (relative) location of a point. So I want to average the different possible locations to the "optimal" one.

Can you help me going through my challenge step by step?


You need to use trigonometry - specifically, the 'cosine rule'. This will give you the angles of the triangle, which lets you solve the 3rd and 4th points.

The rules states that

c^2 = a^2 + b^2 - 2abCosC

where a, b and c are the lengths of the sides, and C is the angle opposite side c.

In your case, we want the angle between 1-2 and 1-3 - the angle between the two lines crossing at (0,0,0). It's going to be 90 degrees because you have the 3-4-5 triangle, but let's prove:

50^2 = 30^2 + 40^2 - 2*30*40*CosC
CosC = 0
C = 90 degrees

This is the angle between the lines (0,0,0)-(30,0,0) and (0,0,0)- point 3; extend along that line the length of side 1-3 (which is 50) and you'll get your second point (0,50,0).

Finding your 4th point is slightly trickier. The most straightforward algorithm that I can think of is to firstly find the (x,y) component of the point, and from there the z component is straightforward using Pythagoras'.

Consider that there is a point on the (x,y,0) plane which sits directly 'below' your point 4 - call this point 5. You can now create 3 right-angled triangles 1-5-4, 2-5-4, and 3-5-4.

You know the lengths of 1-4, 2-4 and 3-4. Because these are right triangles, the ratio 1-4 : 2-4 : 3-4 is equal to 1-5 : 2-5 : 3-5. Find the point 5 using trigonometric methods - the 'sine rule' will give you the angles between 1-2 & 1-4, 2-1 and 2-4 etc.

The 'sine rule' states that (in a right triangle)

a / SinA = b / SinB = c / SinC

So for triangle 1-2-4, although you don't know lengths 1-4 and 2-4, you do know the ratio 1-4 : 2-4. Similarly you know the ratios 2-4 : 3-4 and 1-4 : 3-4 in the other triangles.

I'll leave you to solve point 4. Once you have this point, you can easily solve the z component of 4 using pythagoras' - you'll have the sides 1-4, 1-5 and the length 4-5 will be the z component.


I'll initially assume you know the distances between all pairs of points.

As you say, you can choose one point (A) as the origin, orient a second point (B) along the x-axis, and place a third point (C) along the xy-plane. You can solve for the coordinates of C as follows:

given: distances ab, ac, bc
assume
A = (0,0)
B = (ab,0)
C = (x,y)  <- solve for x and y, where:
  ac^2 = (A-C)^2 = (0-x)^2 + (0-y)^2 = x^2 + y^2
  bc^2 = (B-C)^2 = (ab-x)^2 + (0-y)^2 = ab^2 - 2*ab*x + x^2 + y^2

-> bc^2 - ac^2 = ab^2 - 2*ab*x
-> x = (ab^2 + ac^2 - bc^2)/2*ab
-> y = +/- sqrt(ac^2 - x^2)

For this to work accurately, you will want to avoid cases where the points {A,B,C} are in a straight line, or close to it.

Solving for additional points in 3-space is similar -- you can expand the Pythagorean formula for the distance, cancel the quadratic elements, and solve the resulting linear system. However, this does not directly help you with your steps 2 and 3...

Unfortunately, I don't know a well-behaved exact solution for steps 2 and 3, either. Your overall problem will generally be both over-constrained (due to conflicting noisy distances) and under-constrained (due to missing distances).

You could try an iterative solver: start with a random placement of all your points, compare the current distances with the given ones, and use that to adjust your points in such a way as to improve the match. This is an optimization technique, so I would look up books on numerical optimization.


If you know the distance between the nodes (fixed part of system) and the distance to the tag (mobile) you can use trilateration to find the x,y postion.

I have done this using the Nanotron radio modules which have a ranging capability.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜