开发者

Undoable sets of changes

I'm looking for a way to manage consistent sets of changes across several data sources, including, but not limited to, a database, some network control tools, and probably other SOAP-based services.

If one change fails for some reason (e.g. real-world app says "no", or a database insert fails), I wan开发者_如何转开发t the whole set to be undone. So that's like transactions, just not limited to a DB.

I came up with a module that stacks up "change" objects which in turn have their init, commit, and rollback methods. When the set is DESTROYed, it rolls uncommitted changes back. This kinda works.

Still I can't overcome the feeling of a wheel being invented. Is there a standard CPAN module, or a well described common method to perform such a task? (At least GoF's "command" pattern and RAII principle come to mind...)


There are a couple of approaches to executing a Distributed transaction (which is what you're describing):

  1. The standard pattern is called "Two-phase commit protocol".

    At the moment I'm not aware of any Perl module which implements Two-phase commit, which is kind of surprising and may likely be due to a lapse in my Googling. The only thing I found was Env::Transaction but I have no clue how stable/good/functional it is.

  2. For certain cases, a solution involving rollback via "Compensating transactions" is possible.

    This is basically a special case of general rollback where, when generating task list A designed to change the target system state from S1 to S2, you at the same time generate a "compensating" task list A-neg designed to change the target system state from S2 back to S1. This is obviously only possible for certain systems, and moreover only a small subset of those are commutative (meaning that your can execute both transaction and its compensating transaction non-contiguously, e.g. the result of A + B + A-neg + B-neg is an invariant state.

    Please notice that the compensating transactions does NOT always have to be engineered to be a "transaction" - one clever approach (again, only possible on certain subject domains) involves storing your data with a special "finalized" flag; then periodically harvest and destroy data with a false "finalized" flag if the data's "originating transaction timestamp" is older than some sort of threshold.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜