开发者

drawing oblique rectangle in android

I wanted to draw a rectangle in android, but not just by specifying the left, 开发者_C百科top, right and bottom. What I have are 4 vertex coordinates. The rectangle is not horizontal but oblique, so something like the image of the rectangle below:

drawing oblique rectangle in android

I've been trying to see if I can use a matrix to perform some kind of rotation or use canvas.rotate(), but I'm still not clear how to do it. Can somebody help me with how to draw such a rectangle?


I'd be interested in seeing somebody else's solution to this problem, but if there isn't an easier way, here's how I implemented it the hard way:

public void drawLineThick(GL10 gl, int thickness, FloatBuffer whichBuffer)
{
    gl.glColor4f(1.0f, 0.0f, 0.0f, 1.0f);
    final float x0 = whichBuffer.get(0);
    final float x1 = whichBuffer.get(2);
    final float y0 = whichBuffer.get(1);
    final float y1 = whichBuffer.get(3);

    boolean slopeZeroCase = false;
    boolean undefinedSlopeCase = false;
    boolean slopeOneCase = false;
    boolean slopeNegOneCase = false;
    boolean slopeSmall = false;
    boolean slopeBig = false;
    float boxThickness = thickness * .001f;

    //Slope (y2-y1)/(x2-x1)
    float m = 0.0f;

    //b parameter of y=mx+b formula, b=y-mx
    float b = 0.0f;

    //Special cases for handling when the slope is zero, undefined
    //both (line of length zero), one, or negative one.
    if (y1 - y0 == 0)
    {
        slopeZeroCase = true;
    }

    if (x1 - x0 == 0)
    {
        undefinedSlopeCase = true;
    }

    //If the slope isn't going to be zero or undefined, it's safe to
    //actually try to calculate it so that we don't have a "divide by zero"
    //by accident
    if (slopeZeroCase == false && undefinedSlopeCase == false)
    {
         m = ((y1 - y0)/(x1 - x0));
         b = (y0 - (m*x0));
    }

    if ( m == 1.0f)
    {
        slopeOneCase = true;
    }

    if (m == -1.0f)
    {
        slopeNegOneCase = true;
    }

    if ((m > 0 && m < 1) || (m < 0 && m > -1))
    {
        slopeSmall = true;
    }
    else
    {
        slopeBig = true;
    }

    //float tempFloat[] = new float[8];

    //Normal line where there is a slope involved
    if (slopeZeroCase == false && undefinedSlopeCase == false && slopeOneCase == false && slopeNegOneCase == false && slopeSmall == true)
    {

        /**
         *          Given a sloped line, in order to make it, "thicker", 
         *          one must offset the original line by + and - the
         *          thickness, in essence creating a box.  The formula
         *          for the points of a given box below (in the direction drawn)
         *          will be:
         * 
         *          p0         p1
         *          *----------*
         *          |          |
         *          |          |
         *          |          |
         *          |          |
         *          *----------*
         *          p3         p2
         *        
         */         

        //p1, x
        tempFloat[0] = x0;

        //p1, y
        tempFloat[1] = y0 + boxThickness;

        //p2, x
        tempFloat[2] = x1;

        //p2, y
        tempFloat[3] = y1 + boxThickness;

        //p3, x
        tempFloat[4] = x1;

        //p3, y
        tempFloat[5] = y1 - boxThickness;

        //p4, x
        tempFloat[6] = x0;

        //p4, y
        tempFloat[7] = y0 - boxThickness;
    }

    else if (slopeZeroCase == false && undefinedSlopeCase == false && slopeOneCase == false && slopeNegOneCase == false && slopeSmall == false)
    {

        /**
         *          Given a sloped line, in order to make it, "thicker", 
         *          one must offset the original line by + and - the
         *          thickness, in essence creating a box.  The formula
         *          for the points of a given box below (in the direction drawn)
         *          will be:
         * 
         * 
         * 
         *          p0         p1
         *          *----------*
         *          |          |
         *          |          |
         *          |          |
         *          |          |
         *          *----------*
         *          p3         p2
         *        
         */         

        //p1, x
        tempFloat[0] = x0 + boxThickness;

        //p1, y
        tempFloat[1] = y0;

        //p2, x
        tempFloat[2] = x1 + boxThickness;

        //p2, y
        tempFloat[3] = y1;

        //p3, x
        tempFloat[4] = x1 - boxThickness;

        //p3, y
        tempFloat[5] = y1;

        //p4, x
        tempFloat[6] = x0 - boxThickness;

        //p4, y
        tempFloat[7] = y0;
    }


    //Horizontal line case, only need to change the y to be +- thickness
    else if (slopeZeroCase == true && undefinedSlopeCase == false && slopeOneCase == false && slopeNegOneCase == false)
    {
        //Log.i("draw", "Horizontal");
        //p1, x
        tempFloat[0] = x0;

        //p1, y
        tempFloat[1] = y0 + boxThickness;

        //p2, x
        tempFloat[2] = x1;

        //p2, y
        tempFloat[3] = y1 + boxThickness;

        //p3, x
        tempFloat[4] = x1;

        //p3, y
        tempFloat[5] = y1 - boxThickness;

        //p4, x
        tempFloat[6] = x0;

        //p4, y
        tempFloat[7] = y0 - boxThickness;
    }

    //Vertical line case, only need to change the x to be +- thickness
    else if (slopeZeroCase == false && undefinedSlopeCase == true && slopeOneCase == false && slopeNegOneCase == false)
    {
        //Log.i("draw", "Vertical");
        //p1, x
        tempFloat[0] = x0 + boxThickness;

        //p1, y
        tempFloat[1] = y0;

        //p2, x
        tempFloat[2] = x1 + boxThickness;

        //p2, y
        tempFloat[3] = y1;

        //p3, x
        tempFloat[4] = x1 - boxThickness;

        //p3, y
        tempFloat[5] = y1;

        //p4, x
        tempFloat[6] = x0 - boxThickness;

        //p4, y
        tempFloat[7] = y0;
    }

    //Case where slope = 1
    else if (slopeZeroCase == false && undefinedSlopeCase == false && slopeOneCase == true && slopeNegOneCase == false)
    {
        //Log.i("draw", "OneSlope");
        //p1, x
        tempFloat[0] = y0 - boxThickness;

        //p1, y
        tempFloat[1] = x0 + boxThickness;

        //p2, x
        tempFloat[2] = y1 - boxThickness;

        //p2, y
        tempFloat[3] = x1 + boxThickness;

        //p3, x
        tempFloat[4] = y1 + boxThickness;

        //p3, y
        tempFloat[5] = x1 - boxThickness;

        //p4, x
        tempFloat[6] = y0 + boxThickness;

        //p4, y
        tempFloat[7] = x0 - boxThickness;

    }

    //Case where slope = -1
    else if (slopeZeroCase == false && undefinedSlopeCase == false && slopeOneCase == false && slopeNegOneCase == true)
    {
        Log.i("draw", "OneSlope");
        //p1, x
        tempFloat[0] = -y0 + boxThickness;

        //p1, y
        tempFloat[1] = -x0 + boxThickness;

        //p2, x
        tempFloat[2] = -y1 + boxThickness;

        //p2, y
        tempFloat[3] = -x1 + boxThickness;

        //p3, x
        tempFloat[4] = -y1 - boxThickness;

        //p3, y
        tempFloat[5] = -x1 - boxThickness;

        //p4, x
        tempFloat[6] = -y0 - boxThickness;

        //p4, y
        tempFloat[7] = -x0 - boxThickness;

    }

    //Allocate the wrapped buffers that OpenGL ES uses for drawing, buffers changed to
    //be allocated at class scope so that they're not re-allocated every time this
    //algorithm is run
    //ByteBuffer tempBoxByteBuffer = ByteBuffer.allocateDirect(tempFloat.length * 4);
    //tempBoxByteBuffer.order(ByteOrder.nativeOrder());
    //FloatBuffer boxFloatBuffer = tempBoxByteBuffer.asFloatBuffer();
    boxFloatBuffer.put(tempFloat);
    boxFloatBuffer.position(0);

    //Draw triangles using points p0, p1, and p2 for the first, and
    //p0, p3, and p2 for the second, filling in between.  See box
    //above for diagram of points.  Indices also changed to be allocated at class scope
    //short indices[] = {0, 1, 2, 0, 3, 2};
    //ByteBuffer tempIndiceBuffer = ByteBuffer.allocateDirect(indices.length * 2);
    //tempIndiceBuffer.order(ByteOrder.nativeOrder());
    //ShortBuffer indiceBuffer = tempIndiceBuffer.asShortBuffer();
    //indiceBuffer.put(indices);
    //indiceBuffer.position(0);

    gl.glVertexPointer(2, GL10.GL_FLOAT, 0, boxFloatBuffer);
    //gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 2);

    gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_SHORT, indiceBuffer);

}

This particular implementation was done so that I could have a filled-in box, which is not a default OpenGL ES capability. What I did, instead, was draw two triangles. The math includes several special cases, a zero slope, a one slope, an undefined slope, a slope is greater than 0 but less than one or less than zero but greater than negative one case, or a slope is greater than one or less than negative one case. All you have to do is draw a line loop instead of a triangle between each set of points, and you'll have a non-filled box.


workaround : instead of drawing rectangle draw a line but set stroke width for paint.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜