Which portion should I be looking at to modify the Path-Algorithm? ( I want to make 3 versions with different pathing algos)
class path_finder ():
def __init__ (self):
# map is a 1-DIMENSIONAL array.
# use the Unfold( (row, col) ) function to convert a 2D coordinate pair
# into a 1D index to use with this array.
self.map = {}
self.size = (-1, -1) # rows by columns
self.pathChainRev = ""
self.pathChain = ""
# starting and ending nodes
self.start = (-1, -1)
self.end = (-1, -1)
# current node (used by algorithm)
self.current = (-1, -1)
# open and closed lists of nodes to consider (used by algorithm)
self.openList = []
self.closedList = []
# used in algorithm (adjacent neighbors path finder is allowed to consider)
#self.neighborSet = [ (0, -1), (0, 1), (-1, 0), (1, 0) ]
#changed to Up Left Down Right
self.neighborSet = [ (0, 1), (-1, 0), (0, -1), (1, 0) ]
def ResizeMap (self, (numRows, numCols)):
self.map = {}
self.size = (numRows, numCols)
# initialize path_finder map to a 2D array of empty nodes
for row in range(0, self.size[0], 1):
for col in range(0, self.size[1], 1):
self.Set( (row, col), node() )
self.SetType( (row, col), 0 )
def CleanUpTemp (self):
# this resets variables needed for a search (but preserves the same map / maze)
self.pathChainRev = ""
self.pathChain = ""
self.current = (-1, -1)
self.openList = []
self.closedList = []
def FindPath (self, startPos, endPos ):
self.CleanUpTemp()
# (row, col) tuples
self.start = startPos
self.end = endPos
# add start node to open list
开发者_如何转开发 self.AddToOpenList( self.start )
self.SetG ( self.start, 0 )
self.SetH ( self.start, 0 )
self.SetF ( self.start, 0 )
doContinue = True
while (doContinue == True):
# GNode + HNode = FNode (Anjos)
thisLowestFNode = self.GetLowestFNode()
# If not @end node, and not not lowest cost (Anjos)
# then set lowest f node to current (Anjos)
# Add to ClosedList (current) (Anjos)
if not thisLowestFNode == self.end and not thisLowestFNode == False:
self.current = thisLowestFNode
self.RemoveFromOpenList( self.current )
self.AddToClosedList( self.current )
# an offset within an array or other data structure object is an integer indicating the distance (displacement) (Anjos)
# from the beginning of the object up until a given element or point, presumably within the same object (Anjos)
for offset in self.neighborSet:
thisNeighbor = (self.current[0] + offset[0], self.current[1] + offset[1])
# if 1st and 2nd are smaller than 0, if it's 1st and 2nd size isn't smaller than itself -1, and if it's not a wall (Anjos)
if not thisNeighbor[0] < 0 and not thisNeighbor[1] < 0 and not thisNeighbor[0] > self.size[0] - 1 and not thisNeighbor[1] > self.size[1] - 1 and not self.GetType( thisNeighbor ) == 1:
cost = self.GetG( self.current ) + 10
# then the cost is whatever our current cost was ^+10.^ (Anjos)
if self.IsInOpenList( thisNeighbor ) and cost < self.GetG( thisNeighbor ):
self.RemoveFromOpenList( thisNeighbor )
# if neighbor is in OpenList, and cost is smaller than G of thisNeighbor, remove from OpenList (Path Choice nullified) (Anjos)
#if self.IsInClosedList( thisNeighbor ) and cost < self.GetG( thisNeighbor ):
# self.RemoveFromClosedList( thisNeighbor )
# if NOT thisNeighbor inOpenList and NOT thisNeighbor inClosedList - add thisNeighbor to OpenList (Anjos)
# set G (previous cost)of thisNeighbor to cost (Anjos)
# calculate thisNeighbor's H(Manhattan) and F (Total) (Anjos)
# set thisNeighbor's parent node to current (Anjos)
if not self.IsInOpenList( thisNeighbor ) and not self.IsInClosedList( thisNeighbor ):
self.AddToOpenList( thisNeighbor )
self.SetG( thisNeighbor, cost )
self.CalcH( thisNeighbor )
self.CalcF( thisNeighbor )
self.SetParent( thisNeighbor, self.current )
# else stop (Anjos)
else:
doContinue = False
# If this isn't the lowest path cost then return False (Anjos)
if thisLowestFNode == False:
return False
# Restart Path Logic? (Anjos)
# reconstruct path
self.current = self.end
while not self.current == self.start: # While the current is NOT the start (Anjos)
# build a string representation of the path using R, L, D, U
if self.current[1] > self.GetParent(self.current)[1]: # current[1] > parent(current[1]) (Anjos)
self.pathChainRev += 'R' # add Right (Anjos)
elif self.current[1] < self.GetParent(self.current)[1]: # current[1] < parent(current[1]) (Anjos)
self.pathChainRev += 'L' # add Left (Anjos)
elif self.current[0] > self.GetParent(self.current)[0]: # current[0] > parent(current[0]) (Anjos)
self.pathChainRev += 'D' # add Down (Anjos)
elif self.current[0] < self.GetParent(self.current)[0]: # current[0] < parent(current[0]) (Anjos)
self.pathChainRev += 'U' # add Up (Anjos)
self.current = self.GetParent(self.current) # get parent from current node (Anjos)
self.SetType( self.current, 4) # set current's Type to 4 ?? No clue what 4 is besides the intermitent ghost (Anjos)
# because pathChainRev was constructed in reverse order, it needs to be reversed!
for i in range(len(self.pathChainRev) - 1, -1, -1):
self.pathChain += self.pathChainRev[i]
# set start and ending positions for future reference
self.SetType( self.start, 2)
self.SetType( self.end, 3)
return self.pathChain
def Unfold (self, (row, col)):
# this function converts a 2D array coordinate pair (row, col)
# to a 1D-array index, for the object's 1D map array.
return (row * self.size[1]) + col
def Set (self, (row, col), newNode):
# sets the value of a particular map cell (usually refers to a node object)
self.map[ self.Unfold((row, col)) ] = newNode
def GetType (self, (row, col)):
return self.map[ self.Unfold((row, col)) ].type
def SetType (self, (row, col), newValue):
self.map[ self.Unfold((row, col)) ].type = newValue
def GetF (self, (row, col)):
return self.map[ self.Unfold((row, col)) ].f
def GetG (self, (row, col)):
return self.map[ self.Unfold((row, col)) ].g
def GetH (self, (row, col)):
return self.map[ self.Unfold((row, col)) ].h
def SetG (self, (row, col), newValue ):
self.map[ self.Unfold((row, col)) ].g = newValue
def SetH (self, (row, col), newValue ):
self.map[ self.Unfold((row, col)) ].h = newValue
def SetF (self, (row, col), newValue ):
self.map[ self.Unfold((row, col)) ].f = newValue
def CalcH (self, (row, col)):
self.map[ self.Unfold((row, col)) ].h = abs(row - self.end[0]) + abs(col - self.end[0])
def CalcF (self, (row, col)):
unfoldIndex = self.Unfold((row, col))
self.map[unfoldIndex].f = self.map[unfoldIndex].g + self.map[unfoldIndex].h
def AddToOpenList (self, (row, col) ):
self.openList.append( (row, col) )
def RemoveFromOpenList (self, (row, col) ):
self.openList.remove( (row, col) )
def IsInOpenList (self, (row, col) ):
if self.openList.count( (row, col) ) > 0:
return True
else:
return False
def GetLowestFNode (self):
lowestValue = 1000 # start arbitrarily high
lowestPair = (-1, -1)
for iOrderedPair in self.openList:
if self.GetF( iOrderedPair ) < lowestValue:
lowestValue = self.GetF( iOrderedPair )
lowestPair = iOrderedPair
if not lowestPair == (-1, -1):
return lowestPair
else:
return False
def AddToClosedList (self, (row, col) ):
self.closedList.append( (row, col) )
def IsInClosedList (self, (row, col) ):
if self.closedList.count( (row, col) ) > 0:
return True
else:
return False
def SetParent (self, (row, col), (parentRow, parentCol) ):
self.map[ self.Unfold((row, col)) ].parent = (parentRow, parentCol)
def GetParent (self, (row, col) ):
return self.map[ self.Unfold((row, col)) ].parent
def draw (self):
for row in range(0, self.size[0], 1):
for col in range(0, self.size[1], 1):
thisTile = self.GetType((row, col))
screen.blit (tileIDImage[ thisTile ], (col * 32, row * 32))
FindPath
looks like the place to start. However, I don't think this code will help you if you want to implement totally different algorithms. What exactly are you trying to do?
Edit:
I think you should look into changing GetLowestNode
and CalcF
and CalcH
too. I think that's where the next node to look at, current cost to reach the tile is, and the heuristic are calculated.
精彩评论