What to keep in mind while learning F#, having learned Scheme
I'm quite interested in learning F#.
My开发者_Python百科 only experience with functional languages has been 2 introductory courses on Scheme in college.
Are there any things that I should keep in mind while learning F#, having previously learned Scheme? Any differences in methodologies, gotchas or other things that might give me trouble?
Are there any things that I should keep in mind while learning F#, having previously learned Scheme? Any differences in methodologies, gotchas or other things that might give me trouble?
Static typing is the major difference between Scheme and F#. This facilitates a style called typeful programming where the type system is used to encode constraints about functions and data such that the compiler proves these aspects of the program correct at compile time and any violations of the constraints are caught immediately.
For example, a sequence of one or more elements of the same type might be conveyed by a value of the following type:
type list1<'a> = List1 of 'a * 'a list
let xs = List1(1, [])
let ys = List1(2, [3; 4])
The compiler now guarantees that any attempt to use an empty one of these sequences will be caught at compile time as an error.
Now, the reduce
function makes no sense on an empty sequence so the built-in implementation for lists barfs at run-time with an exception if it encounters an empty sequence:
> List.reduce (+) [];;
System.ArgumentException: The input list was empty.
Parameter name: list
at Microsoft.FSharp.Collections.ListModule.Reduce[T](FSharpFunc`2 reduction, FSharpList`1 list)
at <StartupCode$FSI_0271>.$FSI_0271.main@()
Stopped due to error
With our new sequence of one or more elements, we can now write a reduce
function that never barfs at run-time with an exception because its input is guaranteed by the type system to be non-empty:
let rec reduce f = function
| List1(x, []) -> x
| List1(x0, x1::xs) -> f x0 (reduce f (List1(x1, xs)))
This is a great way to improve the reliability of software by eliminating sources of run-time errors and it is something that dynamically typed languages like Scheme cannot even begin to do.
Scheme is a nice functional language; learning it in school should provide a good foundation for functional programming.
F# is statically-typed whereas Scheme is dynamic, so that is one obvious difference. If you have experience with other static languages (especially .NET languages like C#) then that will not be a big deal, but if most of your experience is dynamic, that will be a change.
Learning the names of the main F# functional programming functions (things like List.map
) is important; most every functional language has the same basic set but often with different names (I don't recall the main Scheme names to compare).
If you have old Scheme 'programming assignments' with sample inputs/outputs handy, it may be useful to re-code them in F# as a way to 'warm up' with the language.
I suggest considering Haskell too, and they are roughly in the same family as F# and ML, and Haskell contains a lot of interesting functional concepts not found elsewhere.
Take a look at tryhaskell.org for an interactive online tutorial.
精彩评论