Making a 4-bit ALU from several 1-bit ALUs
I'm trying to combine several 1 bit ALUs into a 4 bit ALU. I am confused about how to actually do this in VHDL. Here is the code for the 1bit ALU that I am using:
component alu1 -- define the 1 bit alu component
port(a, b: std_logic_vector(1 downto 0);
m: in std_logic_vector(1 downto 0);
result: out std_logic_vector(1 downto 0));
end alu1;
architecture behv1 of alu1 is
begin
process(a, b, m)
begin
case m is
when "00" =>
result <= a + b;
when "01" =>开发者_运维技巧
result <= a + (not b) + 1;
when "10" =>
result <= a and b;
when "11" =>
result <= a or b;
end case
end process
end behv1
I am assuming I define alu1 as a component of the larger entity alu4, but how can I tie them together?
Interesting you would even ask that question. VHDL synthesizers are quite capable of inferring any adder you like. You can just type what you need:
use ieee.numeric_std.all;
...
signal r : unsigned(3 downto 0);
signal a : unsigned(2 downto 0);
signal b : unsigned(2 downto 0);
signal c : unsigned(2 downto 0);
...
r <= a + b + c;
Then you can slice r
to fit your needs:
result <= std_logic_vector(r(2 downto 0));
You can't (easily) string together these 1-bit ALUs into a functional multiple bit version. There is no way to handle the carry in/out needed for your add and subtract modes to work properly (the bitwise and & or should work OK, however).
Ignoring the carry issue for the moment, you would typically just setup a for generate loop and instantiate multiple copies of your bitwise logic, possibly special casing the first and/or last elements, ie:
MyLabel : for bitindex in 0 to 3 generate
begin
alu_x4 : entity work.alu1
port map (
a => input_a(bitindex),
b => input_b(bitindex),
m => mode,
result => result_x4(bitindex) );
end generate;
精彩评论