passing text through a dictionary in Python
I currently have python code that compares two texts using the cosine similarity measure. I got the code here.
What I want to do is take the two texts and pass them through a dictionary (not a python dictionary, just a dictionary of words) first before calculating the similarity measure. The dictionary will just be a list of words, although it will be a large list. I know it shouldn't be hard and I could maybe stumble my way through something, but I would like it to开发者_开发百科 be efficient too. Thanks.
If the dictionary fites in memory, use a Python set:
ok_words = set(["a", "b", "c", "e"])
def filter_words(words):
return [word for word in words if word in ok_words]
If it doesn't fit in memory, you can use shelve
The structure you try to create is known as Inverted Index. Here you can find some general information about it and snippets from Heaps and Mills's implementation. Unfortunately, I wasn't able to find it's source, as well as any other efficient implementation. (Please leave comment if you will find any.)
If you haven't a goal to create a library in pure Python, you can use PyLucene - Python extension for accessing Lucene, which is in it's turn very powerful search engine in Java. Lucene implements inverted index and can easily provide you information on word frequency. It also supports wide range of analyzers (parsers + stemmers) for a dozen of languages.
(Also note, that Lucene already has it's own Similarity measure class.)
Some words about similarity and Vector Space Models. It is very powerful abstraction, but your implementation suffers several disadvantages. With a growth of number of documents in your index your co-occurrence matrix will became to big to fit in memory, and searching in it will take a long time. To stop this effect dimension reduction is used. In methods like LSA this is done by Singular Value Decomposition. Also pay attention to such techniques as PLSA, which uses probabilistic theory, and Random Indexing, which is the only incremental (and so the only appropriate for the large indexes) VSM method.
精彩评论