Pointer on ctypes to use OpenCV on Python 3.1
I try to use OpenCV on Python 3.1 through ctypes, but I do not know how represent pointers. Example, if I want to load an image and print the content of her first pixel, I will write in C++:
#include <opencv/cv.h>
#include <opencv/highgui.h>
using namespace std;
int main() {
IplImage *img;
img = cvLoadImage("/home/foo/foo.png");
CvScalar pixel = cvGet2D(img, 20, 30);
printf(pixel)
return 0
}
But in Python, on ctypes, I must represent IplImage, CvScalar structures and more, and I must use "pointers", to do this, for example: IplImage *img;
.
But how? I tried:
from ctypes import *
cv = cdll.LoadLibrary("libcv.so")
highgui = cdll.LoadLibrary("libhighgui.so")
class IplRoi(Structure):
_fields_ = [("coi", c_int),
("height", c_int),
("ptr", c_char_p),
("width", c_int),
开发者_如何学JAVA ("xOffset", c_int),
("yOffset", c_int)]
class IplImage(Structure):
_fields_ = [("nChannels", c_int),
("depth", c_int),
("width", c_int),
("height", c_int),
("imageData", c_char_p),
("dataOrder", c_int),
("origin", c_int),
("widthStep", c_int),
("imageSize", c_int),
(IplRoi(), c_char_p),
("imageDataOrigin", c_char_p),
("align", c_int)]
image = IplImage(highgui.cvLoadImage("/home/michael/connerie.jpg"))
image = byref(image)
cv.cvGet2D(image, 1, 1)
But I do not have the CvScalar structure (I do not kown how represent it), and I'm using bad pointers ctypes, and I have a "segfault" error.
In OpenCV 2.3, the CvScalar
structure is a double[4]
wrapped in a struct, and the other structure definitions shown in the question are are significantly different. Also, cvLoadImage
has an iscolor
argument with a default value in C++. This has to be set to one of the CV_LOAD_IMAGE_*
constants when called with ctypes.
from ctypes import *
CV_LOAD_IMAGE_UNCHANGED = -1
CV_LOAD_IMAGE_GRAYSCALE = 0
CV_LOAD_IMAGE_COLOR = 1
CV_LOAD_IMAGE_ANYDEPTH = 2
CV_LOAD_IMAGE_ANYCOLOR = 4
CvArr = None
class CvScalar(Structure):
_fields_ = [('val', c_double * 4)] # e.g BGRA, see channelSeq
class IplRoi(Structure):
_fields_ = [
('coi', c_int),
('xOffset', c_int),
('yOffset', c_int),
('width', c_int),
('height', c_int),
]
class IplImage(Structure): pass
IplImage._fields_ = [
('nSize', c_int),
('ID', c_int),
('nChannels', c_int),
('alphaChannel', c_int),
('depth', c_int),
('colorModel', c_char * 4),
('channelSeq', c_char * 4),
('dataOrder', c_int),
('origin', c_int),
('align', c_int),
('width', c_int),
('height', c_int),
('roi', POINTER(IplRoi)),
('maskROI', POINTER(IplImage)),
('imageId', c_void_p),
('tileInfo', c_void_p),
('imageSize', c_int),
('imageData', POINTER(c_char)),
('widthStep', c_int),
('BorderMode', c_int * 4),
('BorderConst', c_int * 4),
('imageDataOrigin', POINTER(c_char)),
]
For testing I used the 2.3 OpenCV libs in the Debian repository and the following 4-channel PNG:
cv = CDLL('libopencv_core.so.2.3')
highgui = CDLL('libopencv_highgui.so.2.3')
highgui.cvLoadImage.restype = POINTER(IplImage)
highgui.cvLoadImage.argtypes = [c_char_p, c_int]
cv.cvGet2D.restype = CvScalar
cv.cvGet2D.argtypes = [POINTER(CvArr), c_int, c_int]
pimg = highgui.cvLoadImage(
b'data/rgba8_trans.png', CV_LOAD_IMAGE_UNCHANGED)
pixsc = cv.cvGet2D(pimg, 30, 30)
img = pimg[0]
pix = tuple(pixsc.val)
print('width = %d, height = %d\n' % (img.width, img.height))
print('y=30, x=30')
print(*zip(img.channelSeq.decode(), pix))
Output:
width = 85, height = 62
y=30, x=30
('B', 128.0) ('G', 128.0) ('R', 64.0) ('A', 176.0)
精彩评论