Using hardware timer in C
Okay, so I've got some C code to perform a mathematical operation which could, pretty much, take any length of time (depending on the operands supplied to it, of course). I was wondering if there is a way to register some kind of method which will be called every n seconds which can analyse the state of the operation, i.e. what iteration it is currently at, possibly using a hardware timer interrupt or something?
The reason I ask this is because I know the common way to implement this is to be keeping track of the current iteration in a variable; say, an integer called progress
and have an IF statement like this in the code:
if ((progress % 10000) == 0)
printf("Currently at iteration %d\n", progress);
but I believe that a mod operation takes a relatively long time to execute, so the idea of having it inside a loop which will be ran many, many times scares me, from an optimisation point of view.
So I get the feeling that having an external way of signalling a progress print is nice and efficient. Are there any great ways to perform this,开发者_JS百科 or is the simple 'mod check' the best (in terms of optimising)?
I'd go with the mod check, but maybe with subtractions instead :-)
icount = 0;
progress = 10000;
/* ... */
if (--progress == 0) {
progress = 10000;
printf("Currently at iteration %d0000\n", ++icount);
}
/* ... */
While mod operations are usually slow, the compiler should be able to optimize and predict this really well and only mis-predict once ever 10'000 ifs, burning one mod operation and ~20 cycles (for the mis-prediction) on it, which is fine. So you are trying to optimize one mod operation every 10'000 iterations. Of course this assumes you are running it on a modern and typical CPU, and not some embedded system with unknown specs. This should even be faster than having a counter variable. Suggestion: Test it with and without the timing code, and figure out a complex solution if there is really a problem.
Premature optimisation is the root of all evil. -Knuth
mod is about the same speed as division, on most CPU's these days that means about 5-10 cycles... in other words hardly anything, slower than multiply/add/subtract, but not enough to really worry about.
However you are right to want to avoid sting in a loop spinning if you're doing work in another thread or something like that, if you're on a unixish system there's timer_create()
or on linux the much easier to use timerfd_create()
But for single threaded, just putting that if in is enough.
Use alarm
setitimer
to raise SIGALRM
signals at regular intervals.
struct itimerval interval;
void handler( int x ) {
write( STDOUT_FILENO, ".", 1 ); /* Defined in POSIX, not in C */
}
int main() {
signal( SIGALRM, &handler );
interval.it_value.tv_sec = 5; /* display after 5 seconds */
interval.it_interval.tv_sec = 5; /* then display every 5 seconds */
setitimer( ITIMER_REAL, &interval, NULL );
/* do computations */
interval.it_interval.tv_sec = 0; /* don't display progress any more */
setitimer( ITIMER_REAL, &interval, NULL );
printf( "\n" ); /* done with the dots! */
}
Note, only a smattering of functions are OK to call inside handler
. They are listed partway down this page. If you want to communicate anything for a fancier printout, do it through a sig_atomic_t
variable.
you could have a global variable for the iterations, which you could monitor from an external thread.
While () {
Print(iteration);
Sleep(1000);
}
You may need to watch out for data races though.
精彩评论