开发者

Why aren't my scala futures more efficient?

I'm running this scala code on a 32-bit quad-core Core2 system:

def job(i:Int,s:Int):Long = {
  val r=(i to 500000000 by s).map(_.toLong).foldLeft(0L)(_+_)
  println("Job "+i+" done")
  r
}

import scala.actors.Future
import scala.actors.Futures._

val JOBS=4

val jobs=(0 until JOBS).toList.map(i=>future {job(i,JOBS)})
println("Running...")
val results=jobs.map(f=>f())
println(results.foldLeft(0L)(_+_))

(Yes, I do know there are much more efficient ways to sum a series of integers; it's just to give the CPU something to do).

Depending on what I set JOBS to, the code runs in the following times:

JOBS=1 : 31.99user 0.84system 0:28.87elapsed 113%CPU
JOBS=2 : 27.71user 1.12system 0:14.74elapsed 195%CPU
JOBS=3 : 33.19user 0.39system 0:13.02elapsed 257%CPU
JOBS=4 : 49.08user 8.46system 0:22.71elapsed 253%CPU

I'm surprised that this doesn't really scale well b开发者_如何学编程eyond 2 futures "in play". I do a lot of multithreaded C++ code and have no doubt I'd get good scaling up to 4 cores and see >390% CPU utilisation if I coded this sort of thing with Intel's TBB or boost::threads (it'd be considerably more verbose of course).

So: what's going on and how can I get the scaling to 4 cores I'd expect to see ? Is this limited by something in scala or the JVM ? It occurs to me I don't actually know "where" scala's futures run... is a thread spawned per future, or does "Futures" provide a thread pool dedicated to running them ?

[I'm using the scala 2.7.7 packages from Debian/Squeeze on a Lenny system with sun-java6 (6-20-0lennny1).]

Update:

As suggested in Rex's answer, I recoded to avoid object creation.

def job(i:Long,s:Long):Long = {
  var t=0L
  var v=i
  while (v<=10000000000L) {
    t+=v
    v+=s
  }
  println("Job "+i+" done")
  t
}
// Rest as above...

This was so much faster I had to significantly increase the iteration count to run for any amount of time! Results are:

JOBS=1: 28.39user 0.06system 0:29.25elapsed 97%CPU
JOBS=2: 28.46user 0.04system 0:14.95elapsed 190%CPU
JOBS=3: 24.66user 0.06system 0:10.26elapsed 240%CPU
JOBS=4: 28.32user 0.12system 0:07.85elapsed 362%CPU

which is much more like what I'd hope to see (although the 3 jobs case is a little odd, with one task consistently completing a couple of seconds before the other two).

Pushing it a bit further, on a quad-core hyperthreaded i7 the latter version with JOBS=8 achieves an x4.4 speedup vs JOBS=1, with 571% CPU usage.


My guess is that the garbage collector is doing more work than the addition itself. So you're limited by what the garbage collector can manage. Try running the test again with something that doesn't create any objects (e.g. use a while loop instead of the range/map/fold). You can also play with the parallel GC options if your real application will hit the GC this heavily.


Try

(i to 500000000 by s).view.map(_.toLong).foldLeft(0L)(_+_)

The application of view is supposed to (as I understood id) to avoid repeated iteration and object creation by providing simple wrappers.

Note also that you can use reduceLeft(_+_) instead of fold.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜