Good data structure for euclidean 3d data queries?
What's a good way to store point cloud data so that it's optimal for an application that will do one of these two queries?
- Nearest (i.e. lowest euclidean distance) data point to (x,y,z)
- Get all the points inside a sphere with radius R around a point (x,y,z)
The structure will only be filled once, but read many times. A lowish memory footprint would be nice as I may be dealing with datasets of > 7 million points, but speed should be of primary concern. A library would be nice, but I wouldn't mind implementing it myself if it's something开发者_运维百科 doable with limited expertise in the area.
Thanks in advance!
A Kd-Tree you get O(log(n)) nearest neighbor, and usually range queries will be fast.
There are a bunch of libraries referenced there. I have not used any of them.
You might also look at CGAL. I have used CGAL for other things, it is tolerably fast, extremely comprehensive, but the documentation will drive you to drink.
A huge portion of the decision in data structures will depend on the spatial organization of the data. For example, highly clustered data tends to have different performance charateristics in kd-trees than evenly distributed data.
KD-Trees are very good for both of these queries.
Octree can be a good option in many cases, as well, and is potentially easier to implement.
There are many libraries out there that do this, using various algorithms. Searching for k-nearest neighbor searching will reveal many useful libraries. I've had pretty good luck with ANN in the past, for example.
精彩评论