开发者

Most efficient way to calculate Levenshtein distance

I just implemented a best match file search algorithm to find the closest match to a string in a dictionary. After profiling my code, I found out that the overwhelming majority of time is spent calculating the distance between the query and the possible results. I am currently implementing the algorithm to calculate the Levenshtein Distance using a 2-D array, which makes the implementation an O(n^2) operation. I was hoping someone could suggest a faster way of doing the same.

Here's my implementation:

public int calculate(String root, String query)
{
  int arr[][] = new int[root.length() + 2][query.length() + 2];

  for (int i = 2; i < root.length() + 2; i++)
  {
    arr[i][0] = (int) root.charAt(i - 2);
    arr[i][1] = (i - 1);
  }

  for (int i = 2; i < query.length() + 2;开发者_JS百科 i++)
  {
    arr[0][i] = (int) query.charAt(i - 2);
    arr[1][i] = (i - 1);
  }

  for (int i = 2; i < root.length() + 2; i++)
  {
    for (int j = 2; j < query.length() + 2; j++)
    {
      int diff = 0;
      if (arr[0][j] != arr[i][0])
      {
        diff = 1;
      }
      arr[i][j] = min((arr[i - 1][j] + 1), (arr[i][j - 1] + 1), (arr[i - 1][j - 1] + diff));
    }
  }
  return arr[root.length() + 1][query.length() + 1];
}

public int min(int n1, int n2, int n3)
{
  return (int) Math.min(n1, Math.min(n2, n3));
}


The wikipedia entry on Levenshtein distance has useful suggestions for optimizing the computation -- the most applicable one in your case is that if you can put a bound k on the maximum distance of interest (anything beyond that might as well be infinity!) you can reduce the computation to O(n times k) instead of O(n squared) (basically by giving up as soon as the minimum possible distance becomes > k).

Since you're looking for the closest match, you can progressively decrease k to the distance of the best match found so far -- this won't affect the worst case behavior (as the matches might be in decreasing order of distance, meaning you'll never bail out any sooner) but average case should improve.

I believe that, if you need to get substantially better performance, you may have to accept some strong compromise that computes a more approximate distance (and so gets "a reasonably good match" rather than necessarily the optimal one).


According to a comment on this blog, Speeding Up Levenshtein, you can use VP-Trees and achieve O(nlogn). Another comment on the same blog points to a python implementation of VP-Trees and Levenshtein. Please let us know if this works.


The Wikipedia article discusses your algorithm, and various improvements. However, it appears that at least in the general case, O(n^2) is the best you can get.

There are however some improvements if you can restrict your problem (e.g. if you are only interested in the distance if it's smaller than d, complexity is O(dn) - this might make sense as a match whose distance is close to the string length is probably not very interesting ). See if you can exploit the specifics of your problem...


I modified the Levenshtein distance VBA function found on this post to use a one dimensional array. It performs much faster.

'Calculate the Levenshtein Distance between two strings (the number of insertions,
'deletions, and substitutions needed to transform the first string into the second)

Public Function LevenshteinDistance2(ByRef s1 As String, ByRef s2 As String) As Long
Dim L1 As Long, L2 As Long, D() As Long, LD As Long 'Length of input strings and distance matrix
Dim i As Long, j As Long, ss2 As Long, ssL As Long, cost As Long 'loop counters, loop step, loop start, and cost of substitution for current letter
Dim cI As Long, cD As Long, cS As Long 'cost of next Insertion, Deletion and Substitution
Dim L1p1 As Long, L1p2 As Long 'Length of S1 + 1, Length of S1 + 2

L1 = Len(s1): L2 = Len(s2)
L1p1 = L1 + 1
L1p2 = L1 + 2
LD = (((L1 + 1) * (L2 + 1))) - 1
ReDim D(0 To LD)
ss2 = L1 + 1

For i = 0 To L1 Step 1: D(i) = i: Next i                'setup array positions 0,1,2,3,4,...
For j = 0 To LD Step ss2: D(j) = j / ss2: Next j        'setup array positions 0,1,2,3,4,...

For j = 1 To L2
    ssL = (L1 + 1) * j
    For i = (ssL + 1) To (ssL + L1)
        If Mid$(s1, i Mod ssL, 1) <> Mid$(s2, j, 1) Then cost = 1 Else cost = 0
        cI = D(i - 1) + 1
        cD = D(i - L1p1) + 1
        cS = D(i - L1p2) + cost

        If cI <= cD Then 'Insertion or Substitution
            If cI <= cS Then D(i) = cI Else D(i) = cS
        Else 'Deletion or Substitution
            If cD <= cS Then D(i) = cD Else D(i) = cS
        End If
    Next i
Next j

LevenshteinDistance2 = D(LD)
End Function

I have tested this function with string 's1' of length 11,304 and 's2' of length 5,665 ( > 64 million character comparisons). With the above single dimension version of the function, the execution time is ~24 seconds on my machine. The original two dimensional function that I referenced in the link above requires ~37 seconds for the same strings. I have optimized the single dimensional function further as shown below and it requires ~10 seconds for the same strings.

'Calculate the Levenshtein Distance between two strings (the number of insertions,
'deletions, and substitutions needed to transform the first string into the second)
Public Function LevenshteinDistance(ByRef s1 As String, ByRef s2 As String) As Long
Dim L1 As Long, L2 As Long, D() As Long, LD As Long         'Length of input strings and distance matrix
Dim i As Long, j As Long, ss2 As Long                       'loop counters, loop step
Dim ssL As Long, cost As Long                               'loop start, and cost of substitution for current letter
Dim cI As Long, cD As Long, cS As Long                      'cost of next Insertion, Deletion and Substitution
Dim L1p1 As Long, L1p2 As Long                              'Length of S1 + 1, Length of S1 + 2
Dim sss1() As String, sss2() As String                      'Character arrays for string S1 & S2

L1 = Len(s1): L2 = Len(s2)
L1p1 = L1 + 1
L1p2 = L1 + 2
LD = (((L1 + 1) * (L2 + 1))) - 1
ReDim D(0 To LD)
ss2 = L1 + 1

For i = 0 To L1 Step 1: D(i) = i: Next i                    'setup array positions 0,1,2,3,4,...
For j = 0 To LD Step ss2: D(j) = j / ss2: Next j            'setup array positions 0,1,2,3,4,...

ReDim sss1(1 To L1)                                         'Size character array S1
ReDim sss2(1 To L2)                                         'Size character array S2
For i = 1 To L1 Step 1: sss1(i) = Mid$(s1, i, 1): Next i    'Fill S1 character array
For i = 1 To L2 Step 1: sss2(i) = Mid$(s2, i, 1): Next i    'Fill S2 character array

For j = 1 To L2
    ssL = (L1 + 1) * j
    For i = (ssL + 1) To (ssL + L1)
        If sss1(i Mod ssL) <> sss2(j) Then cost = 1 Else cost = 0
        cI = D(i - 1) + 1
        cD = D(i - L1p1) + 1
        cS = D(i - L1p2) + cost
        If cI <= cD Then 'Insertion or Substitution
            If cI <= cS Then D(i) = cI Else D(i) = cS
        Else 'Deletion or Substitution
            If cD <= cS Then D(i) = cD Else D(i) = cS
        End If
    Next i
Next j

LevenshteinDistance = D(LD)
End Function


Commons-lang has a pretty fast implementation. See http://web.archive.org/web/20120526085419/http://www.merriampark.com/ldjava.htm.

Here's my translation of that into Scala:

// The code below is based on code from the Apache Commons lang project.
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements. See the NOTICE file distributed with this
 * work for additional information regarding copyright ownership. The ASF
 * licenses this file to You under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance with the
 * License. You may obtain a copy of the License at
 * 
 * http://www.apache.org/licenses/LICENSE-2.0
 * 
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations
 * under the License.
 */
/**
* assert(levenshtein("algorithm", "altruistic")==6)
* assert(levenshtein("1638452297", "444488444")==9)
* assert(levenshtein("", "") == 0)
* assert(levenshtein("", "a") == 1)
* assert(levenshtein("aaapppp", "") == 7)
* assert(levenshtein("frog", "fog") == 1)
* assert(levenshtein("fly", "ant") == 3)
* assert(levenshtein("elephant", "hippo") == 7)
* assert(levenshtein("hippo", "elephant") == 7)
* assert(levenshtein("hippo", "zzzzzzzz") == 8)
* assert(levenshtein("hello", "hallo") == 1)
*
*/
def levenshtein(s: CharSequence, t: CharSequence, max: Int = Int.MaxValue) = {
import scala.annotation.tailrec
def impl(s: CharSequence, t: CharSequence, n: Int, m: Int) = {
  // Inside impl n <= m!
  val p = new Array[Int](n + 1) // 'previous' cost array, horizontally
  val d = new Array[Int](n + 1) // cost array, horizontally

  @tailrec def fillP(i: Int) {
    p(i) = i
    if (i < n) fillP(i + 1)
  }
  fillP(0)

  @tailrec def eachJ(j: Int, t_j: Char, d: Array[Int], p: Array[Int]): Int = {
    d(0) = j
    @tailrec def eachI(i: Int) {
      val a = d(i - 1) + 1
      val b = p(i) + 1
      d(i) = if (a < b) a else {
        val c = if (s.charAt(i - 1) == t_j) p(i - 1) else p(i - 1) + 1
        if (b < c) b else c
      }
      if (i < n)
        eachI(i + 1)
    }
    eachI(1)

    if (j < m)
      eachJ(j + 1, t.charAt(j), p, d)
    else
      d(n)
  }
  eachJ(1, t.charAt(0), d, p)
}

val n = s.length
val m = t.length
if (n == 0) m else if (m == 0) n else {
  if (n > m) impl(t, s, m, n) else impl(s, t, n, m)
}

}


I know this is very late but it is relevant to the discussion at hand.

As mentioned by others, if all you want to do is check whether the edit distance between two strings is within some threshold k, you can reduce the time complexity to O(kn). A more precise expression would be O((2k+1)n). You take a strip which spans k cells either side of the diagonal cell (length of strip 2k+1) and compute the values of cells lying on this strip.

Interestingly, there's been an improvement by Li et. al. and this has been further reduced to O((k+1)n).

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜