simplifying threading in python
I am looking for a way to ease my threaded code.
There are a lot of places in my code where I do something like:
for arg in array:
t=Thread(lambda:myFunction(arg))
t.start()
i.e running the same function, each time for different parameters, in threads.
This is of course a simplified version of the real code, and usually the code inside the for
loop is ~10-2开发者_开发百科0 lines long, that cannot be made simple by using one auxiliary function like myFunction
in the example above (had that been the case, I could've just used a thread pool).
Also, this scenario is very, very common in my code, so there are tons of lines which I consider redundant. It would help me a lot if I didn't need to handle all this boilerplate code, but instead be able to do something like:
for arg in array:
with threaded():
myFunction(arg)
i.e somehow threaded()
takes every line of code inside it and runs it in a separate thread.
I know that context managers aren't supposed to be used in such situations, that it's probably a bad idea and will require an ugly hack, but nonetheless - can it be done, and how?
How about this:
for arg in array:
def _thread():
# code here
print arg
t = Thread(_thread)
t.start()
additionally, with decorators, you can sugar it up a little:
def spawn_thread(func):
t = Thread(func)
t.start()
return t
for arg in array:
@spawn_thread
def _thread():
# code here
print arg
Would a thread pool help you here? Many implementations for Python exist, for example this one.
P.S: still interested to know what your exact use-case is
What you want is a kind of "contextual thread pool".
Take a look at the ThreadPool class in this module, designed to be used similar to the manner you've given. Use would be something like this:
with ThreadPool() as pool:
for arg in array:
pool.add_thread(target=myFunction, args=[arg])
Failures in any task given to a ThreadPool will flag an error, and perform the standard error backtrace handling.
I think you're over-complicating it. This is the "pattern" I use:
# util.py
def start_thread(func, *args):
thread = threading.Thread(target=func, args=args)
thread.setDaemon(True)
thread.start()
return thread
# in another module
import util
...
for arg in array:
util.start_thread(myFunction, arg)
I don't see the big deal about having to create myFunction
. You could even define the function inline with the function that starts it.
def do_stuff():
def thread_main(arg):
print "I'm a new thread with arg=%s" % arg
for arg in array:
util.start_thread(thread_main, arg)
If you're creating a large number of threads, a thread pool definitely makes more sense. You can easily make your own with the Queue
and threading
modules. Basically create a jobs
queue, create N
worker threads, give each thread a "pointer" to the queue and have them pull jobs from the queue and process them.
精彩评论