开发者

Pointer-to-member-func, template & inheritance mixup

I am trying to create a generic "callback" object that will hold arbitrary data and invoke member functions of related classes. Due to internal policy, I cannot use Boost.

The callback object looks like this:

template<typename Object, typename Data>
class Callback
{
public:
  typedef void (Object::*PHandler)(Callback*);
  Callback(Object* obj, PHandler handler) : pObj(obj), pHandler(handler) {}
  Callback& set(PHandler handler) { pHandler = handler; return *this; }
  void run() { (pObj->*pHandler)(this); }

public:
  Data data;

protected:
  Object* pObj;
  PHandler pHandler;
};

And the class it works on:

struct Object1
{
  struct Data { int i; };

  typedef Callback<Object1, Data> Callback1;

  void callback(Callback1* pDisp) { printf("%cb\n", pDisp->data.i); }

  void test()
  {
    Callback1 cb(t开发者_JS百科his, &Object1::callback);
    cb.data.i = 1;
    cb.run();
  }
};

The following test works as expected:

Object1 obj1;
obj1.test();

So far so good.

However, when a coworker tried to derive from the Callback class instead of using a typedef, they got compilation errors due to incompatible pointers:

struct Object2
{
  struct Data { int i; Data(int j) { i = j; } };

  class Callback2 : public Callback<Object2, Data>
  {
    Callback2(Object2* obj, PHandler handler, int i) : Callback(obj, handler) { data.i = i; }
  };

  void callback(Callback2* pDisp) { printf("%cb\n", pDisp->data.i); }

  void test()
  {
    Callback2 cb(this, &Object2::callback, 2);
    cb.run();
  }
};

I tried using the "curiously recurring template pattern" in the Callback class and managed to get derived classes working, but it broke code that used the typedef method.

My question is:

How can I modify the Callback class to work with both cases, and without requiring extra work on the part of the user of the class?


It is unfortunate that you work for a company which advocates reinventing wheels and using bronze age C++. However, given the circumstances and the code you posted, there is a fairly simple solution without making too many changes. I've had to do similar things before not because of company policy but because we were developing a software development kit and we did not want to require that users of the SDK have a specific version of boost installed.

BTW, I believe what you are really after is a signals and slots mechanism: I suggest studying it if you want to make this design a bit more conforming to well-established solutions.

I took a few liberal assumptions: the primary one being that Data does not have to be stored in the callback and can instead be passed by the sender. This should be a more flexible design. It is still very simple - you can take this a lot further (ex: variable-number of arguments and custom return types, a signal class, deferred notifications, etc).

template<typename Data>
class CallbackInterface
{
public: 
    virtual ~CallbackInterface() {}
    virtual void run(const Data& data) = 0;
    virtual CallbackInterface* clone() const = 0;
};

template<typename Object, typename Data>
class CallbackMethod: public CallbackInterface<Data>
{
public:
    typedef void (Object::*PHandler)(const Data&);
    CallbackMethod(Object* obj, PHandler handler) : pObj(obj), pHandler(handler) {}
    virtual void run(const Data& data) { (pObj->*pHandler)(data); }
    virtual CallbackInterface* clone() const {return new CallbackMethod(*this); }

protected:
    Object* pObj;
    PHandler pHandler;
};

template <class Data>
class Callback
{
public:
    template <class Object>
    Callback(Object* obj, void (Object::*method)(const Data&) ):
        cb(new CallbackMethod<Object, Data>(obj, method)) 
    {
    }

    Callback(const Callback& other): cb(other.cb->clone() )
    {

    }

    Callback& operator=(const Callback& other) 
    {
        delete cb;
        cb = other.cb->clone();
        return *this;
    }

    ~Callback() 
    {
        delete cb; 
    }

    void operator()(const Data& data) const
    {
       cb->run(data);
    }

private:
    CallbackInterface<Data>* cb;
};

Example usage:

struct Foo
{
    void f(const int& x)
    {
        cout << "Foo: " << x << endl;
    }
};

struct Bar
{
    void f(const int& x)
    {
        cout << "Bar: " << x << endl;
    }
};

int main()
{
    Foo f;
    Callback<int> cb(&f, &Foo::f);
    cb(123); // outputs Foo: 123

    Bar b;
    cb = Callback<int>(&b, &Bar::f);
    cb(456); // outputs Bar: 456
}

As you can see, the Callback object itself does not require the object type to be passed in as a template argument, thereby allowing it to point to methods of any type provided that the method conforms to the signature: void some_class::some_method(const Data&). Store a list of these Callback objects in a class capable of calling all of them and you have yourself a signal with connected slots.


You have to pass the class type of the derived. To not break the typedef-way, you can can give that parameter a default value. Something like the following should work

template<typename Object, typename Data, typename Derived = void>
class Callback;

namespace detail {
template<typename Object, typename Data, typename Derived>
struct derived { 
  typedef Derived derived_type;
};

template<typename Object, typename Data>
struct derived<Object, Data, void> { 
  typedef Callback<Object, Data, void> derived_type;
};
}

template<typename Object, typename Data, typename Derived>
class Callback : detail::derived<Object, Data, Derived>
{
  typedef typename 
    detail::derived<Object, Data, Derived>::derived_type
    derived_type;

  derived_type &getDerived() {
    return static_cast<derived_type&>(*this);
  }

public:
  // ... stays unchanged ...

  derived_type& set(PHandler handler) { 
    pHandler = handler; return getDerived(); 
  }
  void run() { (pObj->*pHandler)(&getDerived()); }

  // ... stays unchanged ...
};

Alternatively you can simply have two classes for this. One for inheritance and one if you don't inherit. The first is for inheritance

template<typename Object, typename Data, typename Derived>
class CallbackBase
{
  typedef Derived derived_type;

  derived_type &getDerived() {
    return static_cast<derived_type&>(*this);
  }

public:
  // ... stays unchanged ...

  derived_type& set(PHandler handler) { 
    pHandler = handler; return getDerived(); 
  }
  void run() { (pObj->*pHandler)(&getDerived()); }

  // ... stays unchanged ...
};

And the second is for non-inheritance. You can make use of the base-class for this

template<typename Object, typename Data>
struct Callback : CallbackBase<Object, Data, Callback<Object, Data> > {
  Callback(Object* obj, PHandler handler) : Callback::CallbackBase(obj, handler) {}
};


Due to internal policy, I cannot use Boost.

Quit ;)

However, when a coworker tried to derive from the Callback class instead of using a typedef

Shoot them.

I feel for you, I really do.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜