Is there any possibility to convert recarray to ndarray and change ndim?
I am getting recarray from matplotlib.mlab.csv2rec function. My expectation was it would have 2 dimensions like 'x', but it has 1 dimension like 'y'. Is there any way to get x from y?
>>> import numpy as n开发者_StackOverflow社区p
>>> from datetime import date
>>> x=np.array([(date(2000,1,1),0,1),
... (date(2000,1,1),1,1),
... (date(2000,1,1),1,0),
... (date(2000,1,1),0,0),
... ])
>>> x
array([[2000-01-01, 0, 1],
[2000-01-01, 1, 1],
[2000-01-01, 1, 0],
[2000-01-01, 0, 0]], dtype=object)
>>> y = np.rec.fromrecords( x )
>>> y
rec.array([(datetime.date(2000, 1, 1), 0, 1),
(datetime.date(2000, 1, 1), 1, 1),
(datetime.date(2000, 1, 1), 1, 0), (datetime.date(2000, 1, 1), 0, 0)],
dtype=[('f0', '|O4'), ('f1', '<i4'), ('f2', '<i4')])
>>> x.ndim
2
>>> y.ndim
1
>>> x.shape
(4, 3)
>>> y.ndim
1
>>> y.shape
(4,)
>>>
You can do it via pandas:
import pandas as pd
pd.DataFrame(y).values
array([[2000-01-01, 0, 1],
[2000-01-01, 1, 1],
[2000-01-01, 1, 0],
[2000-01-01, 0, 0]], dtype=object)
But I would consider doing my project in pandas if I were you. Support for named columns is built much more deeply into pandas than into regular numpy.
>>> z = pd.DataFrame.from_records(y, index="f0")
>>> z
f1 f2
f0
2000-01-01 0 1
2000-01-01 1 1
2000-01-01 1 0
2000-01-01 0 0
>>> z["f1"]
f0
2000-01-01 0
2000-01-01 1
2000-01-01 1
2000-01-01 0
Name: f1
Well, there might be a more efficient way than this, but here is one way:
#!/usr/bin/env python
import numpy as np
from datetime import date
x=np.array([(date(2000,1,1),0,1),
(date(2000,1,1),1,1),
(date(2000,1,1),1,0),
(date(2000,1,1),0,0),
])
y=np.rec.fromrecords( x )
z=np.empty((len(y),len(y.dtype)),dtype='object')
for idx,field in enumerate(y.dtype.names):
z[:,idx]=y[field]
assert (x==z).all()
Sounds weird but... I can save to csv by using matplotlib.mlab.rec2csv, and then read to ndarray by using numpy.loadtxt. My case is simpler as I already have csv file. Here is an example how it works.
>>> a = np.loadtxt( 'name.csv', skiprows=1, delimiter=',', converters = {0: lambda x: 0} )
>>> a
array([[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0. , 0. , 0. , 0. , 0. ],
[ 0. , 0.29, 0.29, 0.43, 0.29, 0. ],
[ 0. , 0.71, 0.29, 0.57, 0. , 0. ],
[ 0. , 1. , 0.57, 0.71, 0. , 0. ],
[ 0. , 0.43, 0.29, 0.14, 0.14, 0. ],
[ 0. , 1. , 0.43, 0.71, 0. , 0. ],
[ 0. , 0.57, 0.57, 0.29, 0.14, 0. ],
[ 0. , 1.43, 0.43, 0.86, 0.43, 0. ],
[ 0. , 1. , 0.71, 0.57, 0. , 0. ],
[ 0. , 1.14, 0.57, 0.29, 0. , 0. ],
[ 0. , 1.43, 0.29, 0.71, 0.29, 0.29],
[ 0. , 1.14, 0.43, 1. , 0.29, 0.29],
[ 0. , 0.43, 1.14, 0.86, 0.43, 0.14],
[ 0. , 1.14, 0.86, 0.86, 0.29, 0.29]])
>>> t = a.any( axis = 1 )
>>> t
array([False, False, False, False, False, False, False, False, False,
False, False, False, False, False, False, False, True, True,
True, True, True, True, True, True, True, True, True,
True, True], dtype=bool)
>>> a.ndim
2
Also in my case I don't need a first column for making a decision.
精彩评论