In Python, Python Image Library 1.1.6, how can I expand the canvas without resizing?
I am probably looking for the wrong thing in the handbook, but I am looking to take an image object and expand it without resizing (stretching/squishing) the original image.
Toy example: imagine a blue rectangle, 200 x 100, then I perform some operation and I have a new image object, 400 x 300, consisting of a white background upon which a 200 x 100 blue rectangle rests. Bonus if I can control in which direction this expands, or the new background color, etc.
Essentially, I have an image to which I will be adding iteratively, and I do not k开发者_运维知识库now what size it will be at the outset.
I suppose it would be possible for me to grab the original object, make a new, slightly larger object, paste the original on there, draw a little more, then repeat. It seems like it might be computationally expensive. However, I thought there would be a function for this, as I assume it is a common operation. Perhaps I assumed wrong.
The ImageOps.expand function will expand the image, but it adds the same amount of pixels in each direction.
The best way is simply to make a new image and paste:
newImage = Image.new(mode, (newWidth,newHeight))
newImage.paste(srcImage, (x1,y1,x1+oldWidth,y1+oldHeight))
If performance is an issue, make your original image bigger than needed and crop it after the drawing is done.
Based on interjays answer:
#!/usr/bin/env python
from PIL import Image
import math
def resize_canvas(old_image_path="314.jpg", new_image_path="save.jpg",
canvas_width=500, canvas_height=500):
"""
Resize the canvas of old_image_path.
Store the new image in new_image_path. Center the image on the new canvas.
Parameters
----------
old_image_path : str
new_image_path : str
canvas_width : int
canvas_height : int
"""
im = Image.open(old_image_path)
old_width, old_height = im.size
# Center the image
x1 = int(math.floor((canvas_width - old_width) / 2))
y1 = int(math.floor((canvas_height - old_height) / 2))
mode = im.mode
if len(mode) == 1: # L, 1
new_background = (255)
if len(mode) == 3: # RGB
new_background = (255, 255, 255)
if len(mode) == 4: # RGBA, CMYK
new_background = (255, 255, 255, 255)
newImage = Image.new(mode, (canvas_width, canvas_height), new_background)
newImage.paste(im, (x1, y1, x1 + old_width, y1 + old_height))
newImage.save(new_image_path)
resize_canvas()
You might consider a rather different approach to your image... build it out of tiles of a fixed size. That way, as you need to expand, you just add new image tiles. When you have completed all of your computation, you can determine the final size of the image, create a blank image of that size, and paste the tiles into it. That should reduce the amount of copying you're looking at for completing the task.
(You'd likely want to encapsulate such a tiled image into an object that hid the tiling aspects from the other layers of code, of course.)
This code will enlarge a smaller image, preserving aspect ratio, then center it on a standard sized canvas. Also preserves transparency, or defaults to gray background.
Tested with P mode PNG files.
Coded debug final.show()
and break
for testing. Remove lines and hashtag on final.save(...)
to loop and save.
Could parameterize canvas ratio and improve flexibility, but it served my purpose.
"""
Resize ... and reconfigures. images in a specified directory
Use case: Images of varying size, need to be enlarged to exaxtly 1200 x 1200
"""
import os
import glob
from PIL import Image
# Source directory plus Glob file reference (Windows)
source_path = os.path.join('C:', os.sep, 'path', 'to', 'source', '*.png')
# List of UNC Image File paths
images = glob.glob(source_path)
# Destination directory of modified image (Windows)
destination_path = os.path.join('C:', os.sep, 'path', 'to', 'destination')
for image in images:
original = Image.open(image)
# Retain original attributes (ancillary chunks)
info = original.info
# Retain original mode
mode = original.mode
# Retain original palette
if original.palette is not None:
palette = original.palette.getdata()[1]
else:
palette = False
# Match original aspect ratio
dimensions = original.getbbox()
# Identify destination image background color
if 'transparency' in info.keys():
background = original.info['transparency']
else:
# Image does not have transparency set
print(image)
background = (64)
# Get base filename and extension for destination
filename, extension = os.path.basename(image).split('.')
# Calculate matched aspect ratio
if dimensions[2] > dimensions[3]:
width = int(1200)
modifier = width / dimensions[2]
length = int(dimensions[3] * modifier)
elif dimensions[3] > dimensions[2]:
length = int(1200)
modifier = length / dimensions[3]
width = int(dimensions[2] * modifier)
else:
width, length = (1200, 1200)
size = (width, length)
# Set desired final image size
canvas = (1200, 1200)
# Calculate center position
position = (
int((1200 - width)/2),
int((1200 - length)/2),
int((1200 - width)/2) + width,
int((1200 - length)/2) + length
)
# Enlarge original image proportionally
resized = original.resize(size, Image.LANCZOS)
# Then create sized canvas
final = Image.new(mode, canvas, background)
# Replicate original properties
final.info = info
# Replicate original palatte
if palette:
final.putpalette(palette)
# Cemter paste resized image to final canvas
final.paste(resized, position)
# Save final image to destination directory
final.show()
#final.save("{}\\{}.{}".format(destination_path, filename, extension))
break
精彩评论