How to determine the longest increasing subsequence using dynamic programming?
I have a set of intege开发者_如何学Crs. I want to find the longest increasing subsequence of that set using dynamic programming.
OK, I will describe first the simplest solution which is O(N^2), where N is the size of the collection. There also exists a O(N log N) solution, which I will describe also. Look here for it at the section Efficient algorithms.
I will assume the indices of the array are from 0 to N - 1. So let's define DP[i]
to be the length of the LIS (Longest increasing subsequence) which is ending at element with index i
. To compute DP[i]
we look at all indices j < i
and check both if DP[j] + 1 > DP[i]
and array[j] < array[i]
(we want it to be increasing). If this is true we can update the current optimum for DP[i]
. To find the global optimum for the array you can take the maximum value from DP[0...N - 1]
.
int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;
for (int i = 1; i < N; i++)
{
DP[i] = 1;
prev[i] = -1;
for (int j = i - 1; j >= 0; j--)
if (DP[j] + 1 > DP[i] && array[j] < array[i])
{
DP[i] = DP[j] + 1;
prev[i] = j;
}
if (DP[i] > maxLength)
{
bestEnd = i;
maxLength = DP[i];
}
}
I use the array prev
to be able later to find the actual sequence not only its length. Just go back recursively from bestEnd
in a loop using prev[bestEnd]
. The -1
value is a sign to stop.
OK, now to the more efficient O(N log N)
solution:
Let S[pos]
be defined as the smallest integer that ends an increasing sequence of length pos
. Now iterate through every integer X
of the input set and do the following:
If
X
> last element inS
, then appendX
to the end ofS
. This essentially means we have found a new largestLIS
.Otherwise find the smallest element in
S
, which is>=
thanX
, and change it toX
. BecauseS
is sorted at any time, the element can be found using binary search inlog(N)
.
Total runtime - N
integers and a binary search for each of them - N * log(N) = O(N log N)
Now let's do a real example:
Collection of integers:
2 6 3 4 1 2 9 5 8
Steps:
0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS
So the length of the LIS is 5
(the size of S).
To reconstruct the actual LIS
we will again use a parent array.
Let parent[i]
be the predecessor of an element with index i
in the LIS
ending at the element with index i
.
To make things simpler, we can keep in the array S
, not the actual integers, but their indices(positions) in the set. We do not keep {1, 2, 4, 5, 8}
, but keep {4, 5, 3, 7, 8}
.
That is input[4] = 1, input[5] = 2, input[3] = 4, input[7] = 5, input[8] = 8.
If we update properly the parent array, the actual LIS is:
input[S[lastElementOfS]],
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................
Now to the important thing - how do we update the parent array? There are two options:
If
X
> last element inS
, thenparent[indexX] = indexLastElement
. This means the parent of the newest element is the last element. We just prependX
to the end ofS
.Otherwise find the index of the smallest element in
S
, which is>=
thanX
, and change it toX
. Hereparent[indexX] = S[index - 1]
.
Petar Minchev's explanation helped clear things up for me, but it was hard for me to parse what everything was, so I made a Python implementation with overly-descriptive variable names and lots of comments. I did a naive recursive solution, the O(n^2) solution, and the O(n log n) solution.
I hope it helps clear up the algorithms!
The Recursive Solution
def recursive_solution(remaining_sequence, bigger_than=None):
"""Finds the longest increasing subsequence of remaining_sequence that is
bigger than bigger_than and returns it. This solution is O(2^n)."""
# Base case: nothing is remaining.
if len(remaining_sequence) == 0:
return remaining_sequence
# Recursive case 1: exclude the current element and process the remaining.
best_sequence = recursive_solution(remaining_sequence[1:], bigger_than)
# Recursive case 2: include the current element if it's big enough.
first = remaining_sequence[0]
if (first > bigger_than) or (bigger_than is None):
sequence_with = [first] + recursive_solution(remaining_sequence[1:], first)
# Choose whichever of case 1 and case 2 were longer.
if len(sequence_with) >= len(best_sequence):
best_sequence = sequence_with
return best_sequence
The O(n^2) Dynamic Programming Solution
def dynamic_programming_solution(sequence):
"""Finds the longest increasing subsequence in sequence using dynamic
programming. This solution is O(n^2)."""
longest_subsequence_ending_with = []
backreference_for_subsequence_ending_with = []
current_best_end = 0
for curr_elem in range(len(sequence)):
# It's always possible to have a subsequence of length 1.
longest_subsequence_ending_with.append(1)
# If a subsequence is length 1, it doesn't have a backreference.
backreference_for_subsequence_ending_with.append(None)
for prev_elem in range(curr_elem):
subsequence_length_through_prev = (longest_subsequence_ending_with[prev_elem] + 1)
# If the prev_elem is smaller than the current elem (so it's increasing)
# And if the longest subsequence from prev_elem would yield a better
# subsequence for curr_elem.
if ((sequence[prev_elem] < sequence[curr_elem]) and
(subsequence_length_through_prev >
longest_subsequence_ending_with[curr_elem])):
# Set the candidate best subsequence at curr_elem to go through prev.
longest_subsequence_ending_with[curr_elem] = (subsequence_length_through_prev)
backreference_for_subsequence_ending_with[curr_elem] = prev_elem
# If the new end is the best, update the best.
if (longest_subsequence_ending_with[curr_elem] >
longest_subsequence_ending_with[current_best_end]):
current_best_end = curr_elem
# Output the overall best by following the backreferences.
best_subsequence = []
current_backreference = current_best_end
while current_backreference is not None:
best_subsequence.append(sequence[current_backreference])
current_backreference = (backreference_for_subsequence_ending_with[current_backreference])
best_subsequence.reverse()
return best_subsequence
The O(n log n) Dynamic Programming Solution
def find_smallest_elem_as_big_as(sequence, subsequence, elem):
"""Returns the index of the smallest element in subsequence as big as
sequence[elem]. sequence[elem] must not be larger than every element in
subsequence. The elements in subsequence are indices in sequence. Uses
binary search."""
low = 0
high = len(subsequence) - 1
while high > low:
mid = (high + low) / 2
# If the current element is not as big as elem, throw out the low half of
# sequence.
if sequence[subsequence[mid]] < sequence[elem]:
low = mid + 1
# If the current element is as big as elem, throw out everything bigger, but
# keep the current element.
else:
high = mid
return high
def optimized_dynamic_programming_solution(sequence):
"""Finds the longest increasing subsequence in sequence using dynamic
programming and binary search (per
http://en.wikipedia.org/wiki/Longest_increasing_subsequence). This solution
is O(n log n)."""
# Both of these lists hold the indices of elements in sequence and not the
# elements themselves.
# This list will always be sorted.
smallest_end_to_subsequence_of_length = []
# This array goes along with sequence (not
# smallest_end_to_subsequence_of_length). Following the corresponding element
# in this array repeatedly will generate the desired subsequence.
parent = [None for _ in sequence]
for elem in range(len(sequence)):
# We're iterating through sequence in order, so if elem is bigger than the
# end of longest current subsequence, we have a new longest increasing
# subsequence.
if (len(smallest_end_to_subsequence_of_length) == 0 or
sequence[elem] > sequence[smallest_end_to_subsequence_of_length[-1]]):
# If we are adding the first element, it has no parent. Otherwise, we
# need to update the parent to be the previous biggest element.
if len(smallest_end_to_subsequence_of_length) > 0:
parent[elem] = smallest_end_to_subsequence_of_length[-1]
smallest_end_to_subsequence_of_length.append(elem)
else:
# If we can't make a longer subsequence, we might be able to make a
# subsequence of equal size to one of our earlier subsequences with a
# smaller ending number (which makes it easier to find a later number that
# is increasing).
# Thus, we look for the smallest element in
# smallest_end_to_subsequence_of_length that is at least as big as elem
# and replace it with elem.
# This preserves correctness because if there is a subsequence of length n
# that ends with a number smaller than elem, we could add elem on to the
# end of that subsequence to get a subsequence of length n+1.
location_to_replace = find_smallest_elem_as_big_as(sequence, smallest_end_to_subsequence_of_length, elem)
smallest_end_to_subsequence_of_length[location_to_replace] = elem
# If we're replacing the first element, we don't need to update its parent
# because a subsequence of length 1 has no parent. Otherwise, its parent
# is the subsequence one shorter, which we just added onto.
if location_to_replace != 0:
parent[elem] = (smallest_end_to_subsequence_of_length[location_to_replace - 1])
# Generate the longest increasing subsequence by backtracking through parent.
curr_parent = smallest_end_to_subsequence_of_length[-1]
longest_increasing_subsequence = []
while curr_parent is not None:
longest_increasing_subsequence.append(sequence[curr_parent])
curr_parent = parent[curr_parent]
longest_increasing_subsequence.reverse()
return longest_increasing_subsequence
Speaking about DP solution, I found it surprising that no one mentioned the fact that LIS can be reduced to LCS. All you need to do is sort the copy of the original sequence, remove all the duplicates and do LCS of them. In pseudocode it is:
def LIS(S):
T = sort(S)
T = removeDuplicates(T)
return LCS(S, T)
And the full implementation written in Go. You do not need to maintain the whole n^2 DP matrix if you do not need to reconstruct the solution.
func lcs(arr1 []int) int {
arr2 := make([]int, len(arr1))
for i, v := range arr1 {
arr2[i] = v
}
sort.Ints(arr1)
arr3 := []int{}
prev := arr1[0] - 1
for _, v := range arr1 {
if v != prev {
prev = v
arr3 = append(arr3, v)
}
}
n1, n2 := len(arr1), len(arr3)
M := make([][]int, n2 + 1)
e := make([]int, (n1 + 1) * (n2 + 1))
for i := range M {
M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
}
for i := 1; i <= n2; i++ {
for j := 1; j <= n1; j++ {
if arr2[j - 1] == arr3[i - 1] {
M[i][j] = M[i - 1][j - 1] + 1
} else if M[i - 1][j] > M[i][j - 1] {
M[i][j] = M[i - 1][j]
} else {
M[i][j] = M[i][j - 1]
}
}
}
return M[n2][n1]
}
The following C++ implementation includes also some code that builds the actual longest increasing subsequence using an array called prev
.
std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
int best_end = 0;
int sz = s.size();
if (!sz)
return std::vector<int>();
std::vector<int> prev(sz,-1);
std::vector<int> memo(sz, 0);
int max_length = std::numeric_limits<int>::min();
memo[0] = 1;
for ( auto i = 1; i < sz; ++i)
{
for ( auto j = 0; j < i; ++j)
{
if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
{
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if ( memo[i] > max_length )
{
best_end = i;
max_length = memo[i];
}
}
// Code that builds the longest increasing subsequence using "prev"
std::vector<int> results;
results.reserve(sz);
std::stack<int> stk;
int current = best_end;
while (current != -1)
{
stk.push(s[current]);
current = prev[current];
}
while (!stk.empty())
{
results.push_back(stk.top());
stk.pop();
}
return results;
}
Implementation with no stack just reverse the vector
#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
auto sz = v.size();
if(!sz)
return v;
std::vector<int> memo(sz, 0);
std::vector<int> prev(sz, -1);
memo[0] = 1;
int best_end = 0;
int max_length = std::numeric_limits<int>::min();
for (auto i = 1; i < sz; ++i) {
for ( auto j = 0; j < i ; ++j) {
if (s[j] < s[i] && memo[i] < memo[j] + 1) {
memo[i] = memo[j] + 1;
prev[i] = j;
}
}
if(memo[i] > max_length) {
best_end = i;
max_length = memo[i];
}
}
// create results
std::vector<int> results;
results.reserve(v.size());
auto current = best_end;
while (current != -1) {
results.push_back(s[current]);
current = prev[current];
}
std::reverse(results.begin(), results.end());
return results;
}
Here are three steps of evaluating the problem from dynamic programming point of view:
- Recurrence definition: maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j]
- Recurrence parameter boundary: there might be 0 to i - 1 sub-sequences passed as a paramter
- Evaluation order: as it is increasing sub-sequence, it has to be evaluated from 0 to n
If we take as an example sequence {0, 8, 2, 3, 7, 9}, at index:
- [0] we'll get subsequence {0} as a base case
- [1] we have 1 new subsequence {0, 8}
- [2] trying to evaluate two new sequences {0, 8, 2} and {0, 2} by adding element at index 2 to existing sub-sequences - only one is valid, so adding third possible sequence {0, 2} only to parameters list ...
Here's the working C++11 code:
#include <iostream>
#include <vector>
int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
if(index == 0) {
sub.push_back(std::vector<int>{sequence[0]});
return 1;
}
size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
std::vector<std::vector<int>> tmpSubSeq;
for(std::vector<int> &subSeq : sub) {
if(subSeq[subSeq.size() - 1] < sequence[index]) {
std::vector<int> newSeq(subSeq);
newSeq.push_back(sequence[index]);
longestSubSeq = std::max(longestSubSeq, newSeq.size());
tmpSubSeq.push_back(newSeq);
}
}
std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
std::back_insert_iterator<std::vector<std::vector<int>>>(sub));
return longestSubSeq;
}
int getLongestIncSub(const std::vector<int> &sequence) {
std::vector<std::vector<int>> sub;
return getLongestIncSub(sequence, sequence.size() - 1, sub);
}
int main()
{
std::vector<int> seq{0, 8, 2, 3, 7, 9};
std::cout << getLongestIncSub(seq);
return 0;
}
Here is a Scala implementation of the O(n^2) algorithm:
object Solve {
def longestIncrSubseq[T](xs: List[T])(implicit ord: Ordering[T]) = {
xs.foldLeft(List[(Int, List[T])]()) {
(sofar, x) =>
if (sofar.isEmpty) List((1, List(x)))
else {
val resIfEndsAtCurr = (sofar, xs).zipped map {
(tp, y) =>
val len = tp._1
val seq = tp._2
if (ord.lteq(y, x)) {
(len + 1, x :: seq) // reversely recorded to avoid O(n)
} else {
(1, List(x))
}
}
sofar :+ resIfEndsAtCurr.maxBy(_._1)
}
}.maxBy(_._1)._2.reverse
}
def main(args: Array[String]) = {
println(longestIncrSubseq(List(
0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15)))
}
}
Here's another O(n^2) JAVA implementation. No recursion/memoization to generate the actual subsequence. Just a string array that stores the actual LIS at every stage and an array to store the length of the LIS for each element. Pretty darn easy. Have a look:
import java.io.BufferedReader;
import java.io.InputStreamReader;
/**
* Created by Shreyans on 4/16/2015
*/
class LNG_INC_SUB//Longest Increasing Subsequence
{
public static void main(String[] args) throws Exception
{
BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter Numbers Separated by Spaces to find their LIS\n");
String[] s1=br.readLine().split(" ");
int n=s1.length;
int[] a=new int[n];//Array actual of Numbers
String []ls=new String[n];// Array of Strings to maintain LIS for every element
for(int i=0;i<n;i++)
{
a[i]=Integer.parseInt(s1[i]);
}
int[]dp=new int[n];//Storing length of max subseq.
int max=dp[0]=1;//Defaults
String seq=ls[0]=s1[0];//Defaults
for(int i=1;i<n;i++)
{
dp[i]=1;
String x="";
for(int j=i-1;j>=0;j--)
{
//First check if number at index j is less than num at i.
// Second the length of that DP should be greater than dp[i]
// -1 since dp of previous could also be one. So we compare the dp[i] as empty initially
if(a[j]<a[i]&&dp[j]>dp[i]-1)
{
dp[i]=dp[j]+1;//Assigning temp length of LIS. There may come along a bigger LIS of a future a[j]
x=ls[j];//Assigning temp LIS of a[j]. Will append a[i] later on
}
}
x+=(" "+a[i]);
ls[i]=x;
if(dp[i]>max)
{
max=dp[i];
seq=ls[i];
}
}
System.out.println("Length of LIS is: " + max + "\nThe Sequence is: " + seq);
}
}
Code in action: http://ideone.com/sBiOQx
here is java O(nlogn) implementation
import java.util.Scanner;
public class LongestIncreasingSeq {
private static int binarySearch(int table[],int a,int len){
int end = len-1;
int beg = 0;
int mid = 0;
int result = -1;
while(beg <= end){
mid = (end + beg) / 2;
if(table[mid] < a){
beg=mid+1;
result = mid;
}else if(table[mid] == a){
return len-1;
}else{
end = mid-1;
}
}
return result;
}
public static void main(String[] args) {
// int[] t = {1, 2, 5,9,16};
// System.out.println(binarySearch(t , 9, 5));
Scanner in = new Scanner(System.in);
int size = in.nextInt();//4;
int A[] = new int[size];
int table[] = new int[A.length];
int k = 0;
while(k<size){
A[k++] = in.nextInt();
if(k<size-1)
in.nextLine();
}
table[0] = A[0];
int len = 1;
for (int i = 1; i < A.length; i++) {
if(table[0] > A[i]){
table[0] = A[i];
}else if(table[len-1]<A[i]){
table[len++]=A[i];
}else{
table[binarySearch(table, A[i],len)+1] = A[i];
}
}
System.out.println(len);
}
}
//TreeSet can be used
This can be solved in O(n^2) using Dynamic Programming. Python code for the same would be like:-
def LIS(numlist):
LS = [1]
for i in range(1, len(numlist)):
LS.append(1)
for j in range(0, i):
if numlist[i] > numlist[j] and LS[i]<=LS[j]:
LS[i] = 1 + LS[j]
print LS
return max(LS)
numlist = map(int, raw_input().split(' '))
print LIS(numlist)
For input:5 19 5 81 50 28 29 1 83 23
output would be:[1, 2, 1, 3, 3, 3, 4, 1, 5, 3]
5
The list_index of output list is the list_index of input list. The value at a given list_index in output list denotes the Longest increasing subsequence length for that list_index.
This is a Java implementation in O(n^2). I just did not use Binary Search to find the smallest element in S, which is >= than X. I just used a for loop. Using Binary Search would make the complexity at O(n logn)
public static void olis(int[] seq){
int[] memo = new int[seq.length];
memo[0] = seq[0];
int pos = 0;
for (int i=1; i<seq.length; i++){
int x = seq[i];
if (memo[pos] < x){
pos++;
memo[pos] = x;
} else {
for(int j=0; j<=pos; j++){
if (memo[j] >= x){
memo[j] = x;
break;
}
}
}
//just to print every step
System.out.println(Arrays.toString(memo));
}
//the final array with the LIS
System.out.println(Arrays.toString(memo));
System.out.println("The length of lis is " + (pos + 1));
}
checkout the code in java for longest increasing subsequence with the array elements
http://ideone.com/Nd2eba
/**
** Java Program to implement Longest Increasing Subsequence Algorithm
**/
import java.util.Scanner;
/** Class LongestIncreasingSubsequence **/
class LongestIncreasingSubsequence
{
/** function lis **/
public int[] lis(int[] X)
{
int n = X.length - 1;
int[] M = new int[n + 1];
int[] P = new int[n + 1];
int L = 0;
for (int i = 1; i < n + 1; i++)
{
int j = 0;
/** Linear search applied here. Binary Search can be applied too.
binary search for the largest positive j <= L such that
X[M[j]] < X[i] (or set j = 0 if no such value exists) **/
for (int pos = L ; pos >= 1; pos--)
{
if (X[M[pos]] < X[i])
{
j = pos;
break;
}
}
P[i] = M[j];
if (j == L || X[i] < X[M[j + 1]])
{
M[j + 1] = i;
L = Math.max(L,j + 1);
}
}
/** backtrack **/
int[] result = new int[L];
int pos = M[L];
for (int i = L - 1; i >= 0; i--)
{
result[i] = X[pos];
pos = P[pos];
}
return result;
}
/** Main Function **/
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Longest Increasing Subsequence Algorithm Test\n");
System.out.println("Enter number of elements");
int n = scan.nextInt();
int[] arr = new int[n + 1];
System.out.println("\nEnter "+ n +" elements");
for (int i = 1; i <= n; i++)
arr[i] = scan.nextInt();
LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence();
int[] result = obj.lis(arr);
/** print result **/
System.out.print("\nLongest Increasing Subsequence : ");
for (int i = 0; i < result.length; i++)
System.out.print(result[i] +" ");
System.out.println();
}
}
This can be solved in O(n^2) using dynamic programming.
Process the input elements in order and maintain a list of tuples for each element. Each tuple (A,B), for the element i will denotes, A = length of longest increasing sub-sequence ending at i and B = index of predecessor of list[i] in the longest increasing sub-sequence ending at list[i].
Start from element 1, the list of tuple for element 1 will be [(1,0)] for element i, scan the list 0..i and find element list[k] such that list[k] < list[i], the value of A for element i, Ai will be Ak + 1 and Bi will be k. If there are multiple such elements, add them to the list of tuples for element i.
In the end, find all the elements with max value of A (length of LIS ending at element) and backtrack using the tuples to get the list.
I have shared the code for same at http://www.edufyme.com/code/?id=66f041e16a60928b05a7e228a89c3799
O(n^2) java implementation:
void LIS(int arr[]){
int maxCount[]=new int[arr.length];
int link[]=new int[arr.length];
int maxI=0;
link[0]=0;
maxCount[0]=0;
for (int i = 1; i < arr.length; i++) {
for (int j = 0; j < i; j++) {
if(arr[j]<arr[i] && ((maxCount[j]+1)>maxCount[i])){
maxCount[i]=maxCount[j]+1;
link[i]=j;
if(maxCount[i]>maxCount[maxI]){
maxI=i;
}
}
}
}
for (int i = 0; i < link.length; i++) {
System.out.println(arr[i]+" "+link[i]);
}
print(arr,maxI,link);
}
void print(int arr[],int index,int link[]){
if(link[index]==index){
System.out.println(arr[index]+" ");
return;
}else{
print(arr, link[index], link);
System.out.println(arr[index]+" ");
}
}
def longestincrsub(arr1):
n=len(arr1)
l=[1]*n
for i in range(0,n):
for j in range(0,i) :
if arr1[j]<arr1[i] and l[i]<l[j] + 1:
l[i] =l[j] + 1
l.sort()
return l[-1]
arr1=[10,22,9,33,21,50,41,60]
a=longestincrsub(arr1)
print(a)
even though there is a way by which you can solve this in O(nlogn) time(this solves in O(n^2) time) but still this way gives the dynamic programming approach which is also good .
Here is my Leetcode solution using Binary Search:->
class Solution:
def binary_search(self,s,x):
low=0
high=len(s)-1
flag=1
while low<=high:
mid=(high+low)//2
if s[mid]==x:
flag=0
break
elif s[mid]<x:
low=mid+1
else:
high=mid-1
if flag:
s[low]=x
return s
def lengthOfLIS(self, nums: List[int]) -> int:
if not nums:
return 0
s=[]
s.append(nums[0])
for i in range(1,len(nums)):
if s[-1]<nums[i]:
s.append(nums[i])
else:
s=self.binary_search(s,nums[i])
return len(s)
Simplest LIS solution in C++ with O(nlog(n)) time complexity
#include <iostream>
#include "vector"
using namespace std;
// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
if(beg<=end)
{
int mid = (beg+end)/2;
if(a[mid] == value)
return mid;
else if(value < a[mid])
return ceilBinarySearch(a,beg,mid-1,value);
else
return ceilBinarySearch(a,mid+1,end,value);
return 0;
}
return beg;
}
int lis(vector<int> arr)
{
vector<int> dp(arr.size(),0);
int len = 0;
for(int i = 0;i<arr.size();i++)
{
int j = ceilBinarySearch(dp,0,len-1,arr[i]);
dp[j] = arr[i];
if(j == len)
len++;
}
return len;
}
int main()
{
vector<int> arr {2, 5,-1,0,6,1,2};
cout<<lis(arr);
return 0;
}
OUTPUT:
4
Longest Increasing Subsequence(Java)
import java.util.*;
class ChainHighestValue implements Comparable<ChainHighestValue>{
int highestValue;
int chainLength;
ChainHighestValue(int highestValue,int chainLength) {
this.highestValue = highestValue;
this.chainLength = chainLength;
}
@Override
public int compareTo(ChainHighestValue o) {
return this.chainLength-o.chainLength;
}
}
public class LongestIncreasingSubsequenceLinkedList {
private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
for(int i=0;i<size;i++){
int currValue=arr[i];
if(valuePairs.size()==0){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}else{
try{
ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
seqList.get(index).add(arr[i]);
heighestIndex.highestValue=arr[i];
heighestIndex.chainLength+=1;
}catch (Exception e){
LinkedList<Integer> aList=new LinkedList<>();
aList.add(arr[i]);
seqList.add(aList);
valuePairs.add(new ChainHighestValue(arr[i],1));
}
}
}
ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
int index=valuePairs.indexOf(heighestIndex);
return seqList.get(index);
}
public static void main(String[] args){
int arry[]={5,1,3,6,11,30,32,5,3,73,79};
//int arryB[]={3,1,5,2,6,4,9};
LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
System.out.println("Longest Incrementing Subsequence:");
for(Integer a: LIS){
System.out.print(a+" ");
}
}
}
I have implemented LIS in java using Dynamic Programming and Memoization. Along with the code I have done complexity calculation i.e. why it is O(n Log(base2) n). As I feel theoretical or logical explanations are good but practical demonstration is always better for understanding.
package com.company.dynamicProgramming;
import java.util.HashMap;
import java.util.Map;
public class LongestIncreasingSequence {
static int complexity = 0;
public static void main(String ...args){
int[] arr = {10, 22, 9, 33, 21, 50, 41, 60, 80};
int n = arr.length;
Map<Integer, Integer> memo = new HashMap<>();
lis(arr, n, memo);
//Display Code Begins
int x = 0;
System.out.format("Longest Increasing Sub-Sequence with size %S is -> ",memo.get(n));
for(Map.Entry e : memo.entrySet()){
if((Integer)e.getValue() > x){
System.out.print(arr[(Integer)e.getKey()-1] + " ");
x++;
}
}
System.out.format("%nAnd Time Complexity for Array size %S is just %S ", arr.length, complexity );
System.out.format( "%nWhich is equivalent to O(n Log n) i.e. %SLog(base2)%S is %S",arr.length,arr.length, arr.length * Math.ceil(Math.log(arr.length)/Math.log(2)));
//Display Code Ends
}
static int lis(int[] arr, int n, Map<Integer, Integer> memo){
if(n==1){
memo.put(1, 1);
return 1;
}
int lisAti;
int lisAtn = 1;
for(int i = 1; i < n; i++){
complexity++;
if(memo.get(i)!=null){
lisAti = memo.get(i);
}else {
lisAti = lis(arr, i, memo);
}
if(arr[i-1] < arr[n-1] && lisAti +1 > lisAtn){
lisAtn = lisAti +1;
}
}
memo.put(n, lisAtn);
return lisAtn;
}
}
While I ran the above code -
Longest Increasing Sub-Sequence with size 6 is -> 10 22 33 50 60 80
And Time Complexity for Array size 9 is just 36
Which is equivalent to O(n Log n) i.e. 9Log(base2)9 is 36.0
Process finished with exit code 0
The O(NLog(N)) Approach To Find Longest Increasing Sub sequence
Let us maintain an array where the ith element is the smallest possible number with which a i sized sub sequence can end.
On purpose I am avoiding further details as the top voted answer already explains it, but this technique eventually leads to a neat implementation using the set data structure (at least in c++).
Here is the implementation in c++ (assuming strictly increasing longest sub sequence size is required)
#include <bits/stdc++.h> // gcc supported header to include (almost) everything
using namespace std;
typedef long long ll;
int main()
{
ll n;
cin >> n;
ll arr[n];
set<ll> S;
for(ll i=0; i<n; i++)
{
cin >> arr[i];
auto it = S.lower_bound(arr[i]);
if(it != S.end())
S.erase(it);
S.insert(arr[i]);
}
cout << S.size() << endl; // Size of the set is the required answer
return 0;
}
The O(NLog(N)) Recursive DP Approach To Finding the Longest Increasing Subsequence (LIS)
Explanation
This algorithm involves creating a tree with node format as (a,b)
.
a
represents the next element we are considering appending to the valid subsequence so far.
b
represents the starting index of the remaining subarray that the next decision will be made from if a
gets appended to the end of the subarray we have so far.
Algorithm
We start with an invalid root (INT_MIN,0), pointing at index zero of the array since subsequence is empty at this point, i.e.
b = 0
.Base Case
: return1
ifb >= array.length
.Loop through all the elements in the array from the
b
index to the end of the array, i.ei = b ... array.length-1
. i) If an element,array[i]
isgreater than
the currenta
, it is qualified to be considered as one of the elements to be appended to the subsequence we have so far. ii) Recurse into the node(array[i],b+1)
, wherea
is the element we encountered in2(i)
which is qualified to be appended to the subsequence we have so far. Andb+1
is the next index of the array to be considered. iii) Return themax
length obtained by looping throughi = b ... array.length
. In a case wherea
is bigger than any other element fromi = b to array.length
, return1
.Compute the level of the tree built as
level
. Finally,level - 1
is the desiredLIS
. That is the number ofedges
in the longest path of the tree.
NB: The memorization part of the algorithm is left out since it's clear from the tree.
Random Example
Nodes marked x
are fetched from the DB memoized values.
Java Implementation
public int lengthOfLIS(int[] nums) {
return LIS(nums,Integer.MIN_VALUE, 0,new HashMap<>()) -1;
}
public int LIS(int[] arr, int value, int nextIndex, Map<String,Integer> memo){
if(memo.containsKey(value+","+nextIndex))return memo.get(value+","+nextIndex);
if(nextIndex >= arr.length)return 1;
int max = Integer.MIN_VALUE;
for(int i=nextIndex; i<arr.length; i++){
if(arr[i] > value){
max = Math.max(max,LIS(arr,arr[i],i+1,memo));
}
}
if(max == Integer.MIN_VALUE)return 1;
max++;
memo.put(value+","+nextIndex,max);
return max;
}
精彩评论