C# WinForms MultiThreading in Loop
Scenario
I have a background worker in my application that runs off and does a bunch of proc开发者_开发百科essing. I specifically used this implementation so as to keep my User Interface fluid and prevent it from freezing up. I want to keep the background worker, but inside that thread, spawn off ONLY 3 MORE threads - making them share the processing (currently the worker thread just loops through and processes each asset one-by-one. However I would like to speed this up but using only a limited number of threads.
Question
Given the code below, how can I get the loop to choose a thread that is free, and then essentially wait if there isn't one free before it continues.
CODE
foreach (KeyValuePair<int, LiveAsset> kvp in laToHaganise)
{
Haganise h = new Haganise(kvp.Value,
busDate,
inputMktSet,
outputMktSet,
prodType,
noOfAssets,
bulkSaving);
h.DoWork();
}
Thoughts
I'm guessing that I would have to start off by creating 3 new threads, but my concern is that if I'm instantiating a new Haganise object each time - how can I pass the correct "h" object to the correct thread.....
Thread firstThread = new Thread(new ThreadStart(h.DoWork));
Thread secondThread =new Thread(new ThreadStart(h.DoWork));
Thread thirdThread = new Thread(new ThreadStart(h.DoWork));
Help greatly appreciated.
Depending on the size of the job the thread has to do, ThreadPool.QueueUserWorkItem may be a good option. That will create a thread and put it in a queue and execute it when there is thread in the pool available.
Alternatively you could create your own type of Pool which has 3 threads and use ManualResetEvent to determine when a particular thread is finished.
Two possibilities:
- Use the ThreadPool.QueueUserWorkItem (as already mentioned by James)
- Implement it BackgroundWorkers on yourself (see below)
Here is a working example, that selects the next free worker:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Threading;
namespace ConsoleApplication1
{
class Program
{
private static List<MyWorker> _Workers;
static void Main(string[] args)
{
_Workers = new List<MyWorker>();
for (int i = 0; i < 5; i++)
{
_Workers.Add(CreateDefaultWorker(i));
}
StartJobs(20000);
Console.ReadKey();
}
private static void StartJobs(int runtime)
{
Random rand = new Random();
DateTime startTime = DateTime.Now;
while (DateTime.Now - startTime < TimeSpan.FromMilliseconds(runtime))
{
var freeWorker = GetFreeWorker();
if (freeWorker != null)
{
freeWorker.Worker.RunWorkerAsync(new Action(() => DoSomething(freeWorker.Index, rand.Next(500, 2000))));
}
else
{
Console.WriteLine("No free worker available!");
Console.WriteLine("Waiting for free one...");
WaitForFreeOne();
}
}
}
private static MyWorker GetFreeWorker()
{
foreach (var worker in _Workers)
{
if (!worker.Worker.IsBusy)
return worker;
}
return null;
}
private static void WaitForFreeOne()
{
while (true)
{
foreach (var worker in _Workers)
{
if (!worker.Worker.IsBusy)
return;
}
Thread.Sleep(1);
}
}
private static MyWorker CreateDefaultWorker(int index)
{
var worker = new MyWorker(index);
worker.Worker.DoWork += (sender, e) => ((Action)e.Argument).Invoke();
worker.Worker.RunWorkerCompleted += (sender, e) => Console.WriteLine("Job finished in worker " + worker.Index);
return worker;
}
static void DoSomething(int index, int timeout)
{
Console.WriteLine("Worker {1} starts to work for {0} ms", timeout, index);
Thread.Sleep(timeout);
}
}
public class MyWorker
{
public int Index { get; private set; }
public BackgroundWorker Worker { get; private set; }
public MyWorker(int index)
{
Index = index;
Worker = new BackgroundWorker();
}
}
}
精彩评论