How to generate SSH key pairs with Python
I'm attempting to write a script to generate SSH Identity key pairs for me.
from M2Crypto import RSA
key = RSA.gen_key(1024, 65337)
key.save_key("/tmp/my.key", cipher=None)
The file /tmp/my.key
looks great now.
By running ssh-keygen -y -f /tmp/my.key > /tmp/my.key.pub
I can extr开发者_StackOverflow中文版act the public key.
My question is how can I extract the public key from python? Using key.save_pub_key("/tmp/my.key.pub")
saves something like:
-----BEGIN PUBLIC KEY-----
MFwwDQYJKoZIhvcNAQEBBQADASDASDASDASDBarYRsmMazM1hd7a+u3QeMP
...
FZQ7Ic+BmmeWHvvVP4Yjyu1t6vAut7mKkaDeKbT3yiGVUgAEUaWMXqECAwEAAQ==
-----END PUBLIC KEY-----
When I'm looking for something like:
ssh-rsa AAAABCASDDBM$%3WEAv/3%$F ..... OSDFKJSL43$%^DFg==
Use cryptography
! pycrypto
is not in active development anymore and if possible you should be using cryptography. Since June it's possible to generate SSH public keys as well:
from cryptography.hazmat.primitives import serialization as crypto_serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography.hazmat.backends import default_backend as crypto_default_backend
key = rsa.generate_private_key(
backend=crypto_default_backend(),
public_exponent=65537,
key_size=2048
)
private_key = key.private_bytes(
crypto_serialization.Encoding.PEM,
crypto_serialization.PrivateFormat.PKCS8,
crypto_serialization.NoEncryption()
)
public_key = key.public_key().public_bytes(
crypto_serialization.Encoding.OpenSSH,
crypto_serialization.PublicFormat.OpenSSH
)
Note: You need at least version 1.4.0
.
Note: If your SSH client does not understand this private key format, replace PKCS8
with TraditionalOpenSSL
.
Just in case there are any future travellers looking to do this. The RSA module support writing out the public key in OpenSSH format now (possibly didn't at the time of earlier posts). So I think you can do what you need with:
from os import chmod
from Crypto.PublicKey import RSA
key = RSA.generate(2048)
with open("/tmp/private.key", 'wb') as content_file:
chmod("/tmp/private.key", 0600)
content_file.write(key.exportKey('PEM'))
pubkey = key.publickey()
with open("/tmp/public.key", 'wb') as content_file:
content_file.write(pubkey.exportKey('OpenSSH'))
The files are opened with a 'wb' as the keys must be written in binary mode. Obviously don't store you're private key in /tmp...
Edit 05/09/2012:
I just realized that pycrypto already has this:
import os
from Crypto.PublicKey import RSA
key = RSA.generate(2048, os.urandom)
print key.exportKey('OpenSSH')
This code works for me:
import os
from Crypto.PublicKey import RSA
key = RSA.generate(2048, os.urandom)
# Create public key.
ssh_rsa = '00000007' + base64.b16encode('ssh-rsa')
# Exponent.
exponent = '%x' % (key.e, )
if len(exponent) % 2:
exponent = '0' + exponent
ssh_rsa += '%08x' % (len(exponent) / 2, )
ssh_rsa += exponent
modulus = '%x' % (key.n, )
if len(modulus) % 2:
modulus = '0' + modulus
if modulus[0] in '89abcdef':
modulus = '00' + modulus
ssh_rsa += '%08x' % (len(modulus) / 2, )
ssh_rsa += modulus
public_key = 'ssh-rsa %s' % (
base64.b64encode(base64.b16decode(ssh_rsa.upper())), )
The key used by ssh is just base64 encoded, i don't know M2Crypto very much, but after a quick overview it seems you could do what you want this way:
import os
from base64 import b64encode
from M2Crypto import RSA
key = RSA.gen_key(1024, 65537)
raw_key = key.pub()[1]
b64key = b64encode(raw_key)
username = os.getlogin()
hostname = os.uname()[1]
keystring = 'ssh-rsa %s %s@%s' % (b64key, username, hostname)
with open(os.getenv('HOME')+'/.ssh/id_rsa.pub') as keyfile:
keyfile.write(keystring)
I didn't test the generated key with SSH, so please let me know if it works (it should i think)
The base64 decoded version of ssh-keygen output to the contents of key.pub() the format of the keyfile is
b64encode('\x00\x00\x00\x07ssh-rsa%s%s' % (key.pub()[0], key.pub()[1]))
If you want, you could just also use ssh-keygen
itself.
You can extend this to also create your file, and just use open
to read the content later, but i focused on creating a .pub key from an already existing key here.
from subprocess import Popen, PIPE
import os
home = f'{os.path.expanduser("~")}'
cert_pos = f'{home}/.ssh/my_key'
your_key_pw = ''
cmd = ['ssh-keygen', '-y', '-f', cert_pos]
if your_key_pw:
cmd.append('-P')
cmd.append(your_key_pw)
p = Popen(cmd, stdout=PIPE)
p.wait()
res, err = p.communicate()
cert_content = res.decode('utf-8')
Here is an example using the Twisted Conch library which leverages PyCrypto under the covers. You can find the API documentation at http://twistedmatrix.com/documents/current/api/twisted.conch.ssh.keys.html:
from twisted.conch.ssh import keys
# one-time use key
k="""-----BEGIN RSA PRIVATE KEY-----
PRIVATE KEY STUFF
-----END RSA PRIVATE KEY-----"""
# create pycrypto RSA object
rsa = keys.RSA.importKey(k)
# create `twisted.conch.ssh.keys.Key` instance which has some nice helpers
key = keys.Key(rsa)
# pull the public part of the key and export an openssh version
ssh_public = key.public().toString("openssh")
print ssh_public
You can use pycryptodome
as described in documentation:
from Crypto.PublicKey import RSA
key = RSA.generate(2048)
private_key = key.export_key()
file_out = open("private.pem", "wb")
file_out.write(private_key)
public_key = key.publickey().export_key()
file_out = open("receiver.pem", "wb")
file_out.write(public_key)
Just guessing... but have you tried something like this?:
print "ssh-rsa " + "".join([ l.strip() for l in open('/tmp/my.key.pub') if not l.startswith('-----')])
Can you get the AAAA...Dfg== string out of it while it's an object? If so, you could simply open a file yourself and save that instead of using the built in save_pub_key function.
I don't know of such a library that comes standard with Python.
If you want to look to third-party libraries, you might find the paramiko library useful (also available from PyPI). It implements the SSH protocol, and has functionality for handling existing keys, but not generating them.
Generation of keys might be a useful addition to that library (you could work with the developers to incorporate it into the Paramiko library), and an easier start than doing it from scratch.
精彩评论