Algorithm for creating cells by spiral on the hexagonal field
Help to find an algorithm for creating cells by spiral on the hexagonal field.
Look at the image:
Let's imagine an dimensionless 2d array. The X axis is the blue line, Y is horizontal, spiral is red.
I need to add cells from the central point x0y0 to point N by sp开发者_开发百科iral
Tell me the way to solve the problem, please. Thank you!
I'd suggest changing the cells numbering sligtly, so that X remains the same when you go down and right (or up and left). Then simple algorithm like the following should work:
int x=0, y=0;
add(x, y); // add the first cell
int N=1
for( int N=1; <some condition>; ++N ) {
for(int i=0; i<N; ++i) add(++x, y); // move right
for(int i=0; i<N-1; ++i) add(x, ++y); // move down right. Note N-1
for(int i=0; i<N; ++i) add(--x, ++y); // move down left
for(int i=0; i<N; ++i) add(--x, y); // move left
for(int i=0; i<N; ++i) add(x, --y); // move up left
for(int i=0; i<N; ++i) add(++x, --y); // move up right
}
This generates the points as follows:
After a transformation we get:
(the circles have a diameter of 1)
Here's a function to get position i
:
void getHexPosition( int i, ref double x, ref double y )
{
if ( i == 0 ) { x = y = 0; return; }
int layer = (int) Math.Round( Math.Sqrt( i/3.0 ) );
int firstIdxInLayer = 3*layer*(layer-1) + 1;
int side = (i - firstIdxInLayer) / layer; // note: this is integer division
int idx = (i - firstIdxInLayer) % layer;
x = layer * Math.Cos( (side - 1) * Math.PI/3 ) + (idx + 1) * Math.Cos( (side + 1) * Math.PI/3 );
y = -layer * Math.Sin( (side - 1) * Math.PI/3 ) - (idx + 1) * Math.Sin( (side + 1) * Math.PI/3 );
}
Scaling the result by Math.Sqrt(.75)
gives
If you're interested in the skewed coordinates like in shura's answer:
int[] h = { 1, 1, 0, -1, -1, 0, 1, 1, 0 };
void getHexSkewedPosition( int i, ref int hx, ref int hy )
{
if ( i == 0 ) { hx = hy = 0; return; }
int layer = (int) Math.Round( Math.Sqrt( i/3.0 ) );
int firstIdxInLayer = 3*layer*(layer-1) + 1;
int side = (i - firstIdxInLayer) / layer;
int idx = (i - firstIdxInLayer) % layer;
hx = layer*h[side+0] + (idx+1) * h[side+2];
hy = layer*h[side+1] + (idx+1) * h[side+3];
}
void getHexPosition( int i, ref double hx, ref double hy )
{
int x = 0, y = 0;
getHexSkewedPosition( i, ref x, ref y );
hx = x - y * .5;
hy = y * Math.Sqrt( .75 );
}
Imagine you had a normal grid with squares instead of hexagons, create the spiral using that grid, then draw it by shifting say, every odd y to the left by m pixels, that'll give you that effect.
You can pick hexes one at a time by using an appropriate score function to select the best of the six not-yet-selected adjacent hexes to the hex selected the previous round. I think a score function that works is to pick the closest to (0,0) (forces selecting hexes in one "shell" at a time), breaking ties by choosing the closest to (1,0) (forces a consistent spiral direction in the new shell). Distance in the hex grid can be computed using the following function:
double grid_distance(int dx, int dy) {
double real_dx = dx + y/2.0;
double real_dy = dy * sqrt(3)/2.0;
return sqrt(real_dx * real_dx + real_dy * real_dy);
}
YOu could do it by simulating directions. If your directions are "0 points up", then increment by 1 as you go clock-wise, the following should do:
Pick a centre cell. Pick the second cell (ideally in direction 0). Set direction to 2. While you have more cells to mark: if the cell in (direction+1)%6 is free: set direction = (direction+1)%6 mark current cell as used go to cell in direction
I loved @shura's way of approaching the problem, but couldn't get that exact algorithm to work. Also, I'm using a 2x1 hexagon spacing (where x cells are spaced 2 apart, and every other x item is hidden).
Here's what I got working (though in JavaScript):
//Hexagon spiral algorithm, modified from
for(var n=1; n<=rings; ++n) {
x+=2; add(x, y);
for(var i=0; i<n-1; ++i) add(++x,++y); // move down right. Note N-1
for(var i=0; i<n; ++i) add(--x,++y); // move down left
for(var i=0; i<n; ++i) { x-=2; add(x, y); } // move left
for(var i=0; i<n; ++i) add(--x,--y); // move up left
for(var i=0; i<n; ++i) add(++x, --y); // move up right
for(var i=0; i<n; ++i) { x+=2; add(x, y); } // move right
}
精彩评论