optimise distance calculation in matlab
I am a newbie with Matlab and I have the following scenario( which is part of a larger problem).
matrix A with 4754x1024 and matrix B with 6800x1024 rows.
For every row in matrix A i need to calculate the euclidean distance in matrix B. I am using the following technique to calculate the distance but I find that this is very inefficie开发者_如何学编程nt and very time consuming in Matlab.
for i=1:row_A
A_data=A_test(i,:);
for j=1:row_B
B_data=B_train(j,:);
X=[A_data;B_data];
%calculate distance
d=pdist(X,'euclidean');
dist(j,i)=d;
end
end
Any suggestions to optimise this because the final step involves performing this operation on 50 such sets of A and B.
Thanks and Regards,
Bhavya
I'm not sure what your code is actually doing.
Assuming your data has the following properties
assert(size(A,2) == size(B,2))
Try
d = zeros(size(A,1), size(B,1));
for i = 1:size(A,1)
d(i,:) = sqrt(sum(bsxfun(@minus, B, A(i,:)).^2, 2));
end
Or possibly better organised by columns (See "Store and Access Data in Columns" in http://www.mathworks.co.uk/company/newsletters/news_notes/june07/patterns.html):
At = A.'; Bt = B.';
d = zeros(size(At,2), size(Bt,2));
for i = 1:size(At,2)
d(i,:) = sqrt(sum(bsxfun(@minus, Bt, At(:,i)).^2, 1));
end
精彩评论