Where to learn about low-level, hard-core performance stuffs?
This is actually a 2 part question:
For people who want to squeeze every clock cycle, people talk about pipelines, cache locality, et开发者_开发百科c.
I have seen these low level performance techniques mentioned here and there but I have not seen a good introduction to the subject, from start to finish. Any resource recommendations? (Google gave me definitions and papers, where I'd really appreciate some kind of worked examples/tutorials real-life hands-on kind of materials)
How does one actually measure this kind of things? Like, as in a profiler of some sort? I know we can always change the code, see the improvement and theorize in retrospect, I am just wondering if there are established tools for the job.
(I know algorithm optimization is where the orders of magnitudes are. I am interested in the metal here)
The chorus of replies is, "Don't optimize prematurely." As you mention, you will get a lot more performance out of a better design than a better loop, and your maintainers will appreciate it, as well.
That said, to answer your question: Learn assembly. Lots and lots of assembly. Don't MUL by a power of two when you can shift. Learn the weird uses of xor to copy and clear registers. For specific references, http://www.mark.masmcode.com/ and http://www.agner.org/optimize/
Yes, you need to time your code. On *nix, it can be as easy as time { commands ; }
but you'll probably want to use a full-features profiler. GNU gprof is open source http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
If this really is your thing, go for it, have fun, and remember, lots and lots of bit-level math. And your maintainers will hate you ;)
EDIT/REWRITE:
If it is books you need Michael Abrash did a good job in this area, Zen of Assembly language, a number of magazine articles, big black book of graphics programming, etc. Much of what he was tuning for is no longer a problem, the problems have changed. What you will get out of this is the ideas of the kinds of things that can cause bottle necks and the kinds of ways to solve. Most important is to time everything, and understand how your timing measurements work so that you are not fooling yourself by measuring incorrectly. Time the different solutions and try crazy, weird solutions, you may find an optimization that you were not aware of and didnt realize until you exposed it.
I have only just started reading but See MIPS Run (early/first edition) looks good so far (note that ARM took over MIPS as the leader in the processor market, so the MIPS and RISC hype is a bit dated). There are a number of text books old and new to be had about MIPS. Mips being designed for performance (At the cost of the software engineer in some ways).
The bottlenecks today fall into the categories of the processor itself and the I/O around it and what is connected to that I/O. The insides of the processor chips themselves (for higher end systems) run much faster than the I/O can handle, so you can only tune so far before you have to go off chip and wait forever. Getting off the train, from the train to your destination half a minute faster when the train ride was 3 hours is not necessarily a worthwhile optimization.
It is all about learning the hardware, you can probably stay within the ones and zeros world and not have to get into the actual electronics. But without really knowing the interfaces and internals you really cannot do much performance tuning. You might re-arrange or change a few instructions and get a little boost, but to make something several hundred times faster you need more than that. Learning a lot of different instruction sets (assembly languages) helps get into the processors. I would recommend simulating HDL, for example processors at opencores, to get a feel for how some folks do their designs and getting a solid handle on how to really squeeze clocks out of a task. Processor knowledge is big, memory interfaces are a huge deal and need to be learned, media (flash, hard disks, etc) and displays and graphics, networking, and all the types of interfaces between all of those things. And understanding at the clock level or as close to it as you can get, is what it takes.
Intel and AMD provide optimization manuals for x86 and x86-64.
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html/
http://developer.amd.com/documentation/guides/pages/default.aspx
Another excellent resource is agner.
http://www.agner.org/optimize/
Some of the key points (in no particular order):
- Alignment; memory, loop/function labels/addresses
- Cache; non-temporal hints, page and cache misses
- Branches; branch prediction and avoiding branching with compare&move op-codes
- Vectorization; using SSE and AVX instructions
- Op-codes; avoiding slow running op-codes, taking advantage of op-code fusion
- Throughput / pipeline; re-ordering or interleaving op-codes to perform separate tasks avoiding partial stales and saturating the processor's ALUs and FPUs
- Loop unrolling; performing multiple iterations for a single "loop comparison, branch"
- Synchronization; using atomic op-code (or LOCK prefix) to avoid high level synchronization constructs
Yes, measure, and yes, know all those techniques.
Experienced people will tell you "don't optimize prematurely", which I relate as simply "don't guess".
They will also say "use a profiler to find the bottleneck", but I have a problem with that. I hear lots of stories of people using profilers and either liking them a lot or being confused with their output. SO is full of them.
What I don't hear a lot of is success stories, with speedup factors achieved.
The method I use is very simple, and I've tried to give lots of examples, including this case.
I'd suggest Optimizing subroutines in assembly language An optimization guide for x86 platforms.
It's quite heavy stuff though ;)
精彩评论