开发者

Replace all NA with FALSE in selected columns in R

I have a question similar to this one, but my dataset is a bit bigger: 50 columns with 开发者_运维百科1 column as UID and other columns carrying either TRUE or NA, I want to change all the NA to FALSE, but I don't want to use explicit loop.

Can plyr do the trick? Thanks.

UPDATE #1

Thanks for quick reply, but what if my dataset is like below:

df <- data.frame(
  id = c(rep(1:19),NA),
  x1 = sample(c(NA,TRUE), 20, replace = TRUE),
  x2 = sample(c(NA,TRUE), 20, replace = TRUE)
)

I only want X1 and X2 to be processed, how can this be done?


If you want to do the replacement for a subset of variables, you can still use the is.na(*) <- trick, as follows:

df[c("x1", "x2")][is.na(df[c("x1", "x2")])] <- FALSE

IMO using temporary variables makes the logic easier to follow:

vars.to.replace <- c("x1", "x2")
df2 <- df[vars.to.replace]
df2[is.na(df2)] <- FALSE
df[vars.to.replace] <- df2


tidyr::replace_na excellent function.

df %>%
  replace_na(list(x1 = FALSE, x2 = FALSE))

This is such a great quick fix. the only trick is you make a list of the columns you want to change.


Try this code:

df <- data.frame(
  id = c(rep(1:19), NA),
  x1 = sample(c(NA, TRUE), 20, replace = TRUE),
  x2 = sample(c(NA, TRUE), 20, replace = TRUE)
)
replace(df, is.na(df), FALSE)

UPDATED for an another solution.

df2 <- df <- data.frame(
  id = c(rep(1:19), NA),
  x1 = sample(c(NA, TRUE), 20, replace = TRUE),
  x2 = sample(c(NA, TRUE), 20, replace = TRUE)
)
df2[names(df) == "id"] <- FALSE
df2[names(df) != "id"] <- TRUE
replace(df, is.na(df) & df2, FALSE)


You can use the NAToUnknown function in the gdata package

df[,c('x1', 'x2')] = gdata::NAToUnknown(df[,c('x1', 'x2')], unknown = 'FALSE')


With dplyr you could also do

df %>% mutate_each(funs(replace(., is.na(.), F)), x1, x2)

It is a bit less readable compared to just using replace() but more generic as it allows to select the columns to be transformed. This solution especially applies if you want to keep NAs in some columns but want to get rid of NAs in others.


An option would be to use a for loop.

for(i in c("x1", "x2")) df[[i]][is.na(df[[i]])] <- FALSE

Benchmark

set.seed(42)
df <- data.frame(
  id = c(rep(1:19),NA),
  x1 = sample(c(NA,TRUE), 20, replace = TRUE),
  x2 = sample(c(NA,TRUE), 20, replace = TRUE)
)

bench::mark(check=FALSE,
"Holger Brandl" = local(dplyr::mutate_each(df, dplyr::funs(replace(., is.na(.), F)), x1, x2)),
"mtelesha" = local(df <- tidyr::replace_na(df, list(x1 = FALSE, x2 = FALSE))),
Ramnath = local(df[,c('x1', 'x2')] <- gdata::NAToUnknown(df[,c('x1', 'x2')], unknown = 'FALSE')),
"Hong Ooi" = local(df[c("x1", "x2")][is.na(df[c("x1", "x2")])] <- FALSE),
GKi = local(for(i in c("x1", "x2")) df[[i]][is.na(df[[i]])] <- FALSE) )
#  expression         min   median `itr/sec` mem_al…¹ gc/se…² n_itr  n_gc total…³
#  <bch:expr>    <bch:tm> <bch:tm>     <dbl> <bch:by>   <dbl> <int> <dbl> <bch:t>
#1 Holger Brandl  16.93ms  17.33ms      57.6  34.43KB    19.2    21     7   365ms
#2 mtelesha        3.94ms   4.39ms     226.    8.15KB    13.1   103     6   456ms
#3 Ramnath       400.28µs 415.44µs    2381.    1.55KB    16.7  1142     8   480ms
#4 Hong Ooi      196.87µs 206.72µs    4755.      488B    18.8  2276     9   479ms
#5 GKi             61.8µs  66.16µs   14808.      280B    20.9  7076    10   478ms

The for-loop is about 3 times faster than Hong Ooi the second and uses the lowest amount of memory.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜