Iterate over a ‘window’ of adjacent elements in Python
This is more a question of elegance and performance rather than “how to do at all”, so I'll just show the code:
def iterate_adjacencies(gen, fill=0, size=2, do_fill_left=True,
do_fill_right=False):
""" Iterates over a 'window' of `size` adjacent elements in the supploed
`gen` generator, using `fill` to fill edge if `do_fill_left` is True
(default), and fill the right edge (i.e. last element and `size-1` of
`fill` elements as the last item) if `do_fill_right` is True. """
fill_size = size - 1
prev = [fill] * fill_size
i = 1
for item in gen: # iterate over the supplied `whatever`.
if not do_fill_left and i < size:
i += 1
开发者_JAVA技巧 else:
yield prev + [item]
prev = prev[1:] + [item]
if do_fill_right:
for i in range(fill_size):
yield prev + [fill]
prev = prev[1:] + [fill]
and then ask: is there already a function for that? And, if not, can you do the same thing in a better (i.e. more neat and/or more fast) way?
Edit:
with ideas from answers of @agf, @FogleBird, @senderle, a resulting somewhat-neat-looking piece of code is:
def window(seq, size=2, fill=0, fill_left=True, fill_right=False):
""" Returns a sliding window (of width n) over data from the iterable:
s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...
"""
ssize = size - 1
it = chain(
repeat(fill, ssize * fill_left),
iter(seq),
repeat(fill, ssize * fill_right))
result = tuple(islice(it, size))
if len(result) == size: # `<=` if okay to return seq if len(seq) < size
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
This page shows how to implement a sliding window with itertools
. http://docs.python.org/release/2.3.5/lib/itertools-example.html
def window(seq, n=2):
"Returns a sliding window (of width n) over data from the iterable"
" s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ... "
it = iter(seq)
result = tuple(islice(it, n))
if len(result) == n:
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
Example output:
>>> list(window(range(10)))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9)]
You'd need to change it to fill left and right if you need.
This is my version that fills, keeping the signature the same. I have previously seen the itertools
recipe, but did not look at it before writing this.
from itertools import chain
from collections import deque
def ia(gen, fill=0, size=2, fill_left=True, fill_right=False):
gen, ssize = iter(gen), size - 1
deq = deque(chain([fill] * ssize * fill_left,
(next(gen) for _ in xrange((not fill_left) * ssize))),
maxlen = size)
for item in chain(gen, [fill] * ssize * fill_right):
deq.append(item)
yield deq
Edit: I also didn't see your comments on your question before posting this.
Edit 2: Fixed. I had tried to do it with one chain
but this design needs two.
Edit 3: As @senderle noted, only use it this as a generator, don't wrap it with list
or accumulate the output, as it yields the same mutable item repeatedly.
Ok, after coming to my senses, here's a non-ridiculous version of window_iter_fill
. My previous version (visible in edits) was terrible because I forgot to use izip
. Not sure what I was thinking. Using izip, this works, and, in fact, is the fastest option for small inputs!
def window_iter_fill(gen, size=2, fill=None):
gens = (chain(repeat(fill, size - i - 1), gen, repeat(fill, i))
for i, gen in enumerate(tee(gen, size)))
return izip(*gens)
This one is also fine for tuple-yielding, but not quite as fast.
def window_iter_deque(it, size=2, fill=None, fill_left=False, fill_right=False):
lfill = repeat(fill, size - 1 if fill_left else 0)
rfill = repeat(fill, size - 1 if fill_right else 0)
it = chain(lfill, it, rfill)
d = deque(islice(it, 0, size - 1), maxlen=size)
for item in it:
d.append(item)
yield tuple(d)
HoverHell's newest solution is still the best tuple-yielding solution for high inputs.
Some timings:
Arguments: [xrange(1000), 5, 'x', True, True]
==============================================================================
window HoverHell's frankeniter : 0.2670ms [1.91x]
window_itertools from old itertools docs : 0.2811ms [2.02x]
window_iter_fill extended `pairwise` with izip : 0.1394ms [1.00x]
window_iter_deque deque-based, copying : 0.4910ms [3.52x]
ia_with_copy deque-based, copying v2 : 0.4892ms [3.51x]
ia deque-based, no copy : 0.2224ms [1.60x]
==============================================================================
Scaling behavior:
Arguments: [xrange(10000), 50, 'x', True, True]
==============================================================================
window HoverHell's frankeniter : 9.4897ms [4.61x]
window_itertools from old itertools docs : 9.4406ms [4.59x]
window_iter_fill extended `pairwise` with izip : 11.5223ms [5.60x]
window_iter_deque deque-based, copying : 12.7657ms [6.21x]
ia_with_copy deque-based, copying v2 : 13.0213ms [6.33x]
ia deque-based, no copy : 2.0566ms [1.00x]
==============================================================================
The deque-yielding solution by agf is super fast for large inputs -- seemingly O(n) instead of O(n, m) like the others, where n is the length of the iter and m is the size of the window -- because it doesn't have to iterate over every window. But I still think it makes more sense to yield a tuple in the general case, because the calling function is probably just going to iterate over the deque anyway; it's just a shift of the computational burden. The asymptotic behavior of the larger program should remain the same.
Still, in some special cases, the deque
-yielding version will probably be faster.
Some more timings based on HoverHell's test structure.
>>> import testmodule
>>> kwa = dict(gen=xrange(1000), size=4, fill=-1, fill_left=True, fill_right=True)
>>> %timeit -n 1000 [a + b + c + d for a, b, c, d in testmodule.window(**kwa)]
1000 loops, best of 3: 462 us per loop
>>> %timeit -n 1000 [a + b + c + d for a, b, c, d in testmodule.ia(**kwa)]
1000 loops, best of 3: 463 us per loop
>>> %timeit -n 1000 [a + b + c + d for a, b, c, d in testmodule.window_iter_fill(**kwa)]
1000 loops, best of 3: 251 us per loop
>>> %timeit -n 1000 [sum(x) for x in testmodule.window(**kwa)]
1000 loops, best of 3: 525 us per loop
>>> %timeit -n 1000 [sum(x) for x in testmodule.ia(**kwa)]
1000 loops, best of 3: 462 us per loop
>>> %timeit -n 1000 [sum(x) for x in testmodule.window_iter_fill(**kwa)]
1000 loops, best of 3: 333 us per loop
Overall, once you use izip
, window_iter_fill
is quite fast, as it turns out -- especially for small windows.
Resulting function (from the edit of the question),
frankeniter with ideas from answers of @agf, @FogleBird, @senderle, a resulting somewhat-neat-looking piece of code is:
from itertools import chain, repeat, islice
def window(seq, size=2, fill=0, fill_left=True, fill_right=False):
""" Returns a sliding window (of width n) over data from the iterable:
s -> (s0,s1,...s[n-1]), (s1,s2,...,sn), ...
"""
ssize = size - 1
it = chain(
repeat(fill, ssize * fill_left),
iter(seq),
repeat(fill, ssize * fill_right))
result = tuple(islice(it, size))
if len(result) == size: # `<=` if okay to return seq if len(seq) < size
yield result
for elem in it:
result = result[1:] + (elem,)
yield result
and, for some performance information regarding deque/tuple:
In [32]: kwa = dict(gen=xrange(1000), size=4, fill=-1, fill_left=True, fill_right=True)
In [33]: %timeit -n 10000 [a+b+c+d for a,b,c,d in tmpf5.ia(**kwa)]
10000 loops, best of 3: 358 us per loop
In [34]: %timeit -n 10000 [a+b+c+d for a,b,c,d in tmpf5.window(**kwa)]
10000 loops, best of 3: 368 us per loop
In [36]: %timeit -n 10000 [sum(x) for x in tmpf5.ia(**kwa)]
10000 loops, best of 3: 340 us per loop
In [37]: %timeit -n 10000 [sum(x) for x in tmpf5.window(**kwa)]
10000 loops, best of 3: 432 us per loop
but anyway, if it's numbers then numpy is likely preferable.
I'm surprised nobody took a simple coroutine approach.
from collections import deque
def window(n, initial_data=None):
if initial_data:
win = deque(initial_data, n)
else:
win = deque(((yield) for _ in range(n)), n)
while 1:
side, val = (yield win)
if side == 'left':
win.appendleft(val)
else:
win.append(val)
win = window(4)
win.next()
print(win.send(('left', 1)))
print(win.send(('left', 2)))
print(win.send(('left', 3)))
print(win.send(('left', 4)))
print(win.send(('right', 5)))
## -- Results of print statements --
deque([1, None, None, None], maxlen=4)
deque([2, 1, None, None], maxlen=4)
deque([3, 2, 1, None], maxlen=4)
deque([4, 3, 2, 1], maxlen=4)
deque([3, 2, 1, 5], maxlen=4)
精彩评论