开发者

Opengl Unsynchronized/Non-blocking Map

I just found the following OpenGL specification for ARB_map_buffer_range.

开发者_如何学GoI'm wondering if it is possible to do non-blocking map calls using this extension?

Currently in my application im rendering to an FBO which I then map to a host PBO buffer.

glMapBuffer(target_, GL_READ_ONLY);  

However, the problem with this is that it blocks the rendering thread while transferring the data.

I could reduce this issue by pipelining the rendering, but latency is a big issue in my application.

My question is whether i can use map_buffer_range with MAP_UNSYNCHRONIZED_BIT and wait for the map operation to finish on another thread, or defer the map operation on the same thread, while the rendering thread renders the next frame.

e.g.

thread 1:

map();
render_next_frame();

thread 2:

wait_for_map

or

thread 1:

map();
while(!is_map_ready())
   do_some_rendering_for_next_frame();

What I'm unsure of is how I know when the map operation is ready, the specification only mentions "other synchronization techniques to ensure correct operation".

Any ideas?


If you map a buffer with GL_MAP_UNSYNCHRONIZED_BIT, the driver will not wait until OpenGL is done with that memory before mapping it for you. So you will get more or less immediate access to it.

The problem is that this does not mean that you can just read/write that memory willy-nilly. If OpenGL is reading from or writing to that buffer and you change it... welcome to undefined behavior. Which can include crashing.

Therefore, in order to actually use unsynchronized mapping, you must synchronize your behavior to OpenGL's access of that buffer. This will involve the use of ARB_sync objects (or NV_fence if you're only on NVIDIA and haven't updated your drivers recently).

That being said, if you're using a fence object to synchronize access to the buffer, then you really don't need GL_MAP_UNSYNCHRONIZED_BIT at all. Once you finish the fence, or detect that it has completed, you can map the buffer normally and it should complete immediately (unless some other operation is reading/writing too).

In general, unsynchronized access is best used for when you need fine-grained write access to the buffer. In this case, good use of sync objects will get you what you really need (the ability to tell when the map operation is finished).


Addendum: The above is now outdated (depending on your hardware). Thanks to OpenGL 4.4/ARB_buffer_storage, you can now not only map unsynchronized, you can keep a buffer mapped indefinitely. Yes, you can have a buffer mapped while it is in use.

This is done by creating immutable storage and providing that storage with (among other things) the GL_MAP_PERSISTENT_BIT. Then you glMapBufferRange, also providing the same bit.

Now technically, that changes pretty much nothing. You still need to synchronize your actions with OpenGL. If you write stuff to a region of the buffer, you'll need to either issue a barrier or flush that region of the buffer explicitly. And if you're reading, you still need to use a fence sync object to make sure that the data is actually there before reading it (and unless you use GL_MAP_COHERENT_BIT too, you'll need to issue a barrier before reading).


In general, it is not possible to do a "nonblocking map", but you can map without blocking.

The reason why there can be no "nonblocking map" is that the moment the function call returns, you could access the data, so the driver must make sure it is there, positively. If the data has not been transferred, what else can the driver do but block.
Threads don't make this any better, and possibly make it worse (adding synchronisation and context sharing issues). Threads cannot magically remove the need to transfer data.

And this leads to how to not block on mapping: Only map when you are sure that the transfer is finished. One safe way to do this is to map the buffer after flipping buffers or after glFinish or after waiting on a query/fence object. Using a fence is the preferrable way if you can't wait until buffers have been swapped. A fence won't stall the pipeline, but will tell you whether or not your transfer is done (glFinish may or may not, but will probably stall). Reading after swapping buffers is also 100% safe, but may not be acceptable if you need the data within the same frame (works perfectly for screenshots or for calculating a histogram for tonemapping, though).

A less safe way is to insert "some other stuff" and hope that in the mean time the transfer has completed.


In respect of below comment:
This answer is not incorrect. It isn't possible to do any better than access data after it's available (this should be obvious). Which means that you must sync/block, one way or the other, there is no choice.
Although, from a very pedantic point of view, you can of course use GL_MAP_UNSYNCHRONIZED_BIT to get a non-blocking map operation, this is entirely irrelevant, as it does not work unless you explicitly reproduce the implicit sync as described above. A mapping that you can't safely access is good for nothing.

Mapping and accessing a buffer that OpenGL is transferring data to without synchronizing/blocking (implicitly or explicitly) means "undefined behavior", which is only a nicer wording for "probably garbage results, maybe crash".
If, on the other hand, you explicitly synchronize (say, with a fence as described above), then it's irrelevant whether or not you use the unsynchronized flag, since no more implicit sync needs to happen anyway.

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新问答

问答排行榜