A question of libevent example code: how is invoked?
I'm learning libev however the code is so hard to understand, so I choose to learn libevent first whose code is relatively clearer. But I encounter a problem when try the example (http://www.wangafu.net/~nickm/libevent-book/01_intro.html).
How is the code event_add(state->write_event, NULL) in do_read() make do_write() function invoked?
/* For sockaddr_in */
#include <netinet/in.h>
/* For socket functions */
#include <sys/socket.h>
/* For fcntl */
#include <fcntl.h>
#include <event2/event.h>
#include <assert.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#define MAX_LINE 16384
void do_read(evutil_socket_t fd, short events, void *arg);
void do_write(evutil_socket_t fd, short events, void *arg);
char
rot13_char(char c)
{
return c;
/* We don't want to use isalpha here; setting the locale would change
* which characters are considered alphabetical. */
if ((c >= 'a' && c <= 'm') || (c >= 'A' && c <= 'M'))
return c + 13;
else if ((c >= 'n' && c <= 'z') || (c >= 'N' && c <= 'Z'))
return c - 13;
else
return c;
}
struct fd_state {
char buffer[MAX_LINE];
size_t buffer_used;
size_t n_written;
size_t write_upto;
struct event *read_event;
struct event *write_event;
};
struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
struct fd_state *state = malloc(sizeof(struct fd_state));
if (!state)
return NULL;
state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
if (!state->read_event) {
free(state);
return NULL;
}
state->write_event =
event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
if (!state->write_event) {
event_free(state->read_event);
free(state);
return NULL;
}
state->buffer_used = state->n_written = state->write_upto = 0;
assert(state->write_event);
return state;
}
void
free_fd_state(struct fd_state *state)
{
event_free(state->read_event);
event_free(state->write_event);
free(state);
}
void
do_read(evutil_socket_t fd, short events, void *arg)
{
struct fd_state *state = arg;
char buf[1024];
int i;
ssize_t result;
while (1) {
assert(state->write_event);
result = recv(fd, buf, sizeof(buf), 0);
if (result <= 0)
break;
for (i=0; i < result; ++i) {
if (state->buffer_used < sizeof(state->buffer))
state->buffer[state->buffer_used++] = rot13_char(buf[i]);
if (buf[i] == '\n') {
assert(state->write_event);
**event_add(state->write_event, NULL);**
state->write_upto = state->buffer_used;
}
}
}
if (result == 0) {
free_fd_state(state);
} else if (result < 0) {
if (errno == EAGAIN) // XXXX use evutil macro
return;
perror("recv");
free_fd_state(state);
}
}
void
**do_write(evutil_socket_t fd, short events, void *arg)**
{
struct fd_state *state = arg;
while (state->n_written < state->write_upto) {
ssize_t result = send(fd, state->buffer + state->n_written,
state->write_upto - state->n_written, 0);
if (result < 0) {
if (errno == EAGAIN) // XXX use evutil macro
return;
free_fd_state(state);
return;
}
assert(result != 0);
state->n_written += result;
}
if (state->n_written == state->buffer_used)
state->n_written = state->write_upto = state->buffer_used = 1;
event_del(state->write_event);
}
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
struct event_base *base = arg;
struct sockaddr_storage ss;
socklen_t slen = sizeof(ss);
int fd = accept(listener, (struct sockaddr*)&ss, &slen);
if (fd < 0) { // XXXX eagain??
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
} else {
struct fd_state *state;
evutil_make_socket_nonblocking(fd);
state = alloc_fd_state(base, fd);
assert(state); /*XXX err*/
assert(state->write_event);
event_add(state->read_event, NULL);
}
}
void
run(void)
{
evutil_socket_t listener;
struct sockaddr_in sin;
struct event_base *base;
struct event *listener_event;
base = event_base_new();
if (!base)
return; /*XXXerr*/
sin.sin_f开发者_运维问答amily = AF_INET;
sin.sin_addr.s_addr = 0;
sin.sin_port = htons(40713);
listener = socket(AF_INET, SOCK_STREAM, 0);
evutil_make_socket_nonblocking(listener);
#ifndef WIN32
{
int one = 1;
setsockopt(listener, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
}
#endif
if (bind(listener, (struct sockaddr*)&sin, sizeof(sin)) < 0) {
perror("bind");
return;
}
if (listen(listener, 16)<0) {
perror("listen");
return;
}
listener_event = event_new(base, listener, EV_READ|EV_PERSIST, do_accept, (void*)base);
/*XXX check it */
event_add(listener_event, NULL);
event_base_dispatch(base);
}
int
main(int c, char **v)
{
setvbuf(stdout, NULL, _IONBF, 0);
run();
return 0;
}
I'm not sure if I'm answering the same question you asked - I understand it as:
How does calling
event_add(state->write_event, NULL)
indo_read()
lead todo_write()
being invoked?
The key to figuring this out is understanding what the do_read()
function is actually doing. do_read() is a callback function associated with a socket which has data to be read: this is set up with allocate_fd_state()
:
struct fd_state *
alloc_fd_state(struct event_base *base, evutil_socket_t fd)
{
/*
* Allocate a new fd_state structure, which will hold our read and write events
* /
struct fd_state *state = malloc(sizeof(struct fd_state));
[...]
/*
* Initialize a read event on the given file descriptor: associate the event with
* the given base, and set up the do_read callback to be invoked whenever
* data is available to be read on the file descriptor.
* /
state->read_event = event_new(base, fd, EV_READ|EV_PERSIST, do_read, state);
[...]
/*
* Set up another event on the same file descriptor and base, which invoked the
* do_write callback anytime the file descriptor is ready to be written to.
*/
state->write_event =
event_new(base, fd, EV_WRITE|EV_PERSIST, do_write, state);
[...]
return state;
}
At this point, though, neither of these events have been event_add()
'ed to the event_base base. The instructions for what to do are all written out, but no one is looking at them. So how does anything get read? state->read_event
is event_add()
'ed to the base after an incoming connection is made. Look at do_accept()
:
void
do_accept(evutil_socket_t listener, short event, void *arg)
{
[ ... accept a new connection and give it a file descriptor fd ... ]
/*
* If the file descriptor is invalid, close it.
*/
if (fd < 0) { // XXXX eagain??
perror("accept");
} else if (fd > FD_SETSIZE) {
close(fd); // XXX replace all closes with EVUTIL_CLOSESOCKET */
/*
* Otherwise, if the connection was successfully accepted...
*/
} else {
[ ... allocate a new fd_state structure, and make the file descriptor non-blocking ...]
/*
* Here's where the magic happens. The read_event created back in alloc_fd_state()
* is finally added to the base associated with it.
*/
event_add(state->read_event, NULL);
}
}
So right after accepting a new connection, the program tells libevent to wait until there's data available on the connection, and then run the do_read()
callback. At this point, it's still impossible for do_write()
to be called. It needs to be event_add()
'ed. This happens in do_read()
:
void
do_read(evutil_socket_t fd, short events, void *arg)
{
/* Create a temporary buffer to receive some data */
char buf[1024];
while (1) {
[ ... Receive the data, copying it into buf ... ]
[ ... if there is no more data to receive, or there was an error, exit this loop... ]
[ ... else, result = number of bytes received ... ]
for (i=0; i < result; ++i) {
[ ... if there's room in the buffer, copy in the rot13() encoded
version of the received data ... ]
/*
* Boom, headshot. If we've reached the end of the incoming data
* (assumed to be a newline), then ...
*/
if (buf[i] == '\n') {
[...]
/*
* Have libevent start monitoring the write_event, which calls do_write
* as soon as the file descriptor is ready to be written to.
*/
event_add(state->write_event, NULL);
[...]
}
}
}
[...]
}
So, after reading in some data from a file descriptor, the program starts waiting until
the file descriptor is ready to be written to, and then invokes do_write()
. Program
flow looks like this:
[ set up an event_base and start waiting for events ]
[ if someone tries to connect ]
[ accept the connection ]
[ ... wait until there is data to read on the connection ... ]
[ read in data from the connection until there is no more left ]
[ ....wait until the connection is ready to be written to ... ]
[ write out our rot13() encoded response ]
I hope that a) that was the correct interpretation of your question, and b) this was a helpful answer.
精彩评论