Generate random numbers in increments
I need to generate n
random numbers between a
and b
, but any two numbers cannot have a difference of less than c
. All variables except n
are floats (n
is an int).
Solutions are preferred in java, but C/C++ is okay too.
Here is what code I have so far.:
static float getRandomNumberInRange(float min, float max) {
return (float) (min + (Math.random() * (ma开发者_StackOverflow社区x - min)));
}
static float[] randomNums(float a, float b, float c, int n) {
float minDistance = c;
float maxDistance = (b - a) - (n - 1) * c;
float[] randomNumArray = new float[n];
float random = getRandomNumberInRange(minDistance, maxDistance);
randomNumArray[0] = a + random;
for (int x = 1; x < n; x++) {
maxDistance = (b - a) - (randomNumArray[x - 1]) - (n - x - 1) * c;
random = getRandomNumberInRange(minDistance, maxDistance);
randomNumArray[x] = randomNumArray[x - 1] + random;
}
return randomNumArray;
}
If I run the function as such (10 times), I get the following output:
Input: randomNums(-1f, 1f, 0.1f, 10)
[-0.88, 0.85, 1.23, 1.3784, 1.49, 1.59, 1.69, 1.79, 1.89, 1.99]
[-0.73, -0.40, 0.17, 0.98, 1.47, 1.58, 1.69, 1.79, 1.89, 1.99]
[-0.49, 0.29, 0.54, 0.77, 1.09, 1.56, 1.69, 1.79, 1.89, 1.99]
I think a reasonable approach can be the following:
- Total "space" is
(b - a)
- Remove the minimum required space
(n-1)*c
to obtain the remaining space - Shot
(n-1)
random numbers between 0 and 1 and scale them so that the sum is this just computed "optional space". Each of them will be a "slice" of space to be used. - First number is
a
- For each other number add
c
and the next "slice" to the previous number. Last number will beb
.
If you don't want first and last to match a
and b
exactly then just create n+1
slices instead of n-1
and start with a+slice[0]
instead of a
.
The main idea is that once you remove the required spacing between the points (totalling (n-1)*c
) the problem is just to find n-1
values so that the sum is the prescribed "optional space". To do this with a uniform distribution just shoot n-1
numbers, compute the sum and uniformly scale those numbers so that the sum is instead what you want by multiplying each of them by the constant factor k = wanted_sum / current_sum
.
To obtain the final result you just use as spacing between a value and the previous one the sum of the mandatory part c
and one of the randomly sampled variable parts.
An example in Python of the code needed for the computation is the following
space = b - a
slack = space - (n - 1)*c
slice = [random.random() for i in xrange(n-1)] # Pick (n-1) random numbers 0..1
k = slack / sum(slice) # Compute needed scaling
slice = [x*k for x in slice] # Scale to get slice sizes
result = [a]
for i in xrange(n-1):
result.append(result[-1] + slice[i] + c)
If you have random number X and you want another random number Y which is a minimum of A from X and a maximum of B from X, why not write that in your code?
float nextRandom(float base, float minDist, float maxDist) {
return base + minDist + (((float)Math.random()) * (maxDist - minDist));
}
by trying to keep the base out of the next number routine, you add a lot of complexity to your algorithm.
Though this does not exactly do what you need and does not incorporate the techinque being described in this thread, I believe that this code will prove to be useful as it will do what it seems like you want.
static float getRandomNumberInRange(float min, float max)
{
return (float) (min + (Math.random() * ((max - min))));
}
static float[] randomNums(float a, float b, float c, int n)
{
float averageDifference=(b-a)/n;
float[] randomNumArray = new float[n];
int random;
randomNumArray[0]=a+averageDifference/2;
for (int x = 1; x < n; x++)
randomNumArray[x]=randomNumArray[x-1]+averageDifference;
for (int x = 0; x < n; x++)
{
random = getRandomNumberInRange(-averageDifference/2, averageDifference/2);
randomNumArray[x]+=random;
}
return randomNumArray;
}
I need to generate n random numbers between a and b, but any two numbers cannot have a difference of less than c. All variables except n are floats (n is an int).
Solutions are preferred in java, but C/C++ is okay too.
First, what distribution? I'm going to assume a uniform distribution, but with that caveat that "any two numbers cannot have a difference of less than c". What you want is called "rejection sampling". There's a wikipedia article on the subject, plus a whole lot of other references on the 'net and in books (e.g. http://www.columbia.edu/~ks20/4703-Sigman/4703-07-Notes-ARM.pdf). Pseudocode, using some function random_uniform()
that returns a random number drawn from U[0,1], and assuming a 1-based array (many languages use a 0-based array):
function generate_numbers (a, b, c, n, result)
result[1] = a + (b-a)*random_uniform()
for index from 2 to n
rejected = true
while (rejected)
result[index] = a + (b-a)*random_uniform()
rejected = abs (result[index] < result[index-1]) < c
end
end
Your solution was almost correct, here is the fix:
maxDistance = b - (randomNumArray[x - 1]) - (n - x - 1) * c;
I would do this by just generating n random numbers between a and b. Then I would sort them and get the first order differences, kicking out any numbers that generate a difference less than c, leaving me with m numbers. If m < n, I would just do it again, this time for n - m numbers, add those numbers to my original results, sort again, generate differences...and so on until I have n numbers.
Note, first order differences means x[1] - x[0], x[2] - x[1] and so on.
I don't have time to write this out in C but in R, it's pretty easy:
getRands<-function(n,a,b,c){
r<-c()
while(length(r) < n){
r<-sort(c(r,runif(n,a,b)))
r<-r[-(which(diff(r) <= c) + 1 )]
}
r
}
Note that if you are too aggresive with c relative to a and b, this kind of solution might take a long time to converge, or not converge at all if n * C > b -a
Also note, I don't mean for this R code to be a fully formed, production ready piece of code, just an illustration of the algorithm (for those who can follow R).
How about using a shifting range as you generate numbers to ensure that they don't appear too close?
static float[] randomNums(float min, float max, float separation, int n) {
float rangePerNumber = (max - min) / n;
// Check separation and range are consistent.
assert (rangePerNumber >= separation) : "You have a problem.";
float[] randomNumArray = new float[n];
// Set range for first random number
float lo = min;
float hi = lo + rangePerNumber;
for (int i = 0; i < n; ++i) {
float random = getRandomNumberInRange(lo, hi);
// Shift range for next random number.
lo = random + separation;
hi = lo + rangePerNumber;
randomNumArray[i] = random;
}
return randomNumArray;
}
I know you already accepted an answer, but I like this problem. I hope it's unique, I haven't gone through everyone's answers in detail just yet, and I need to run, so I'll just post this and hope it helps.
Think of it this way: Once you pick your first number, you have a chunk +/- c that you can no longer pick in.
So your first number is
range1=b-a
x=Random()*range1+a
At this point, x is somewhere between a and b (assuming Random()
returns in 0 to 1). Now, we mark out the space we can no longer pick in
excludedMin=x-c
excludedMax=x+c
If x is close to either end, then it's easy, we just pick in the remaining space
if (excludedMin<=a)
{
range2=b-excludedMax
y=Random()*range2+excludedMax
}
Here, x is so close to a, that you won't get y between a and x, so you just pick between x+c and b. Likewise:
else if (excludedMax>=b)
{
range2=excludedMin-a
y=Random()*range2+a
}
Now if x is somewhere in the middle, we have to do a little magic
else
{
range2=b-a-2*c
y=Random()*range2+a
if (y>excludedMin) y+=2*c
}
What's going on here? Well, we know that the range y can lie in, is 2*c smaller than the whole space, so we pick a number somewhere in that smaller space. Now, if y is less than excludedMin, we know y "is to the left" of x-c, and we're all ok. However, if y>excluded min, we add 2*c (the total excluded space) to it, to ensure that it's greater than x+c, but it'll still be less than b because our range was reduced.
Now, it's easy to expand so n numbers, each time you just reduce the range by the excluded space among any of the other points. You continue until the excluded space equals the original range (b-a).
I know it's bad form to do a second answer, but I just thought of one...use a recursive search of the space:
Assume a global list of points: points
FillRandom(a,b,c)
{
range=b-a;
if (range>0)
{
x=Random()*range+a
points.Append(x)
FillRandom(a,x-c,c)
FillRandom(x+c,b,c)
}
}
I'll let you follow the recursion, but at the end, you'll have a list in points
that fills the space with density 1/c
精彩评论