joystick deadzone calculation
My problem: given x and y, I need to calculate the x and y for the required joystick deflection.
This is simple when there is no joystick deadzone -- I just use the x and y with no manipulation.
When there is a deadzone, I want x=0 to be zero and x=non-zero to be the first value in that direction that is outside the deadzone.
A square deadzone is simple. In the following code x and y are from -1 to 1 inclusive. The deadzone is from 0 to 1 inclusive.
float xDeflection = 0;
if (x > 0)
xDeflection = (1 - deadzone) * x + deadzone;
else if (x < 0)
xDeflection = (1 - deadzone) * x - deadzone;
float yDeflection = 0;
if (y > 0)
yDeflection = (1 - deadzone) * y + deadzone;
else if (y < 0)
yDeflection = (1 - deadzone) * y - deadzone;
A circular deadzone is trickier. After a whole lot of fooling around I came up with this:
float xDeflection = 0, yDeflection = 0;
if (x != 0 || y != 0) {
float distRange = 1 - deadzone;
float dist = distRange * (float)Math.sqrt(x * x + y * y) + deadzone;
double angle = Math.atan2(x, y);
xDeflection = dist * (float)Math.sin(angle);
yDeflection = dist * (float)Math.cos(angle);
}
Here is what this outputs for the joystick deflection at the extremes (deadzone=0.25):
Non-square joystick deflection. http://n4te.com/temp/nonsquare.gif
As you can see, the deflection does not extend to the corners. IE, if x=1,y=1 then the xDeflection and yDeflection both equal something like 0.918. The problem worsens with larger deadzones, making the green lines in the image above look more and more like a circle. At deadzone=1 the green lines are a circle that matches the deadzone.
I found that with a small change I could enlarge the shape represented by the green lines and clip values outside of -1 to 1:
if (x != 0 || y != 0) {
float distRange = 1 - 0.71f * deadzone;
float dist = distRange * (float)Math.sqrt(x * x + y * y) + deadzone;
double angle = Math.atan2(x, y);
xDeflection = dist * (float)Math.sin(angle);
xDeflection = Math.min(1, Math.max(-1, xDeflection));
yDeflection = dist * (float)Math.cos(angle);
yDeflection = Math.min(1, Math.max(-1, yDeflection));
}
I came up with the constant 0.71 from trial and error. This number makes the shape large enough that the corners are within a few decimal places of the actual corners. For academic reasons, can anyone explain why 0.71 happens to be the number that does this?
Overall, I'm not really sure if I am taking the right approach. Is there a better way to accomplish what I need for a circular deadzone?
I have written a simple Swing-based program to visual what is going on:
import java.awt.BorderLayout;
import java.awt.CardLayout;
import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.util.Hashtable;
import javax.swing.DefaultComboBoxModel;
import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
public class DeadzoneTest extends JFrame {
float xState, yState;
float deadzone = 0.3f;
int size = (int)(255 * deadzone);
public DeadzoneTest () {
super("DeadzoneTest");
setDefaultCloseOperation(DISPOSE_ON_CLOSE);
final CardLayout cardLayout = new CardLayout();
final JPanel centerPanel = new JPanel(cardLayout);
getContentPane().add(centerPanel, BorderLayout.CENTER);
centerPanel.setPreferredSize(new Dimension(512, 512));
Hashtable labels = new Hashtable();
labels.put(-255, new JLabel("-1"));
labels.put(-128, new JLabel("-0.5"));
labels.put(0, new JLabel("0"));
labels.put(128, new JLabel("0.5"));
labels.put(255, new JLabel("1"));
final JSlider ySlider = new JSlider(JSlider.VERTICAL, -256, 256, 0);
getContentPane().add(ySlider, BorderLayout.EAST);
ySlider.setInverted(true);
ySlider.setLabelTable(labels);
ySlider.setPaintLabels(true);
ySlider.setMajorTickSpacing(32);
ySlider.setSnapToTicks(true);
ySlider.addChangeList开发者_StackOverflowener(new ChangeListener() {
public void stateChanged (ChangeEvent event) {
yState = ySlider.getValue() / 255f;
centerPanel.repaint();
}
});
final JSlider xSlider = new JSlider(JSlider.HORIZONTAL, -256, 256, 0);
getContentPane().add(xSlider, BorderLayout.SOUTH);
xSlider.setLabelTable(labels);
xSlider.setPaintLabels(true);
xSlider.setMajorTickSpacing(32);
xSlider.setSnapToTicks(true);
xSlider.addChangeListener(new ChangeListener() {
public void stateChanged (ChangeEvent event) {
xState = xSlider.getValue() / 255f;
centerPanel.repaint();
}
});
final JSlider deadzoneSlider = new JSlider(JSlider.VERTICAL, 0, 100, 33);
getContentPane().add(deadzoneSlider, BorderLayout.WEST);
deadzoneSlider.setInverted(true);
deadzoneSlider.createStandardLabels(25);
deadzoneSlider.setPaintLabels(true);
deadzoneSlider.setMajorTickSpacing(25);
deadzoneSlider.setSnapToTicks(true);
deadzoneSlider.addChangeListener(new ChangeListener() {
public void stateChanged (ChangeEvent event) {
deadzone = deadzoneSlider.getValue() / 100f;
size = (int)(255 * deadzone);
centerPanel.repaint();
}
});
final JComboBox combo = new JComboBox();
combo.setModel(new DefaultComboBoxModel(new Object[] {"round", "square"}));
getContentPane().add(combo, BorderLayout.NORTH);
combo.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent event) {
cardLayout.show(centerPanel, (String)combo.getSelectedItem());
}
});
centerPanel.add(new Panel() {
public void toDeflection (Graphics g, float x, float y) {
g.drawRect(256 - size, 256 - size, size * 2, size * 2);
float xDeflection = 0;
if (x > 0)
xDeflection = (1 - deadzone) * x + deadzone;
else if (x < 0) {
xDeflection = (1 - deadzone) * x - deadzone;
}
float yDeflection = 0;
if (y > 0)
yDeflection = (1 - deadzone) * y + deadzone;
else if (y < 0) {
yDeflection = (1 - deadzone) * y - deadzone;
}
draw(g, xDeflection, yDeflection);
}
}, "square");
centerPanel.add(new Panel() {
public void toDeflection (Graphics g, float x, float y) {
g.drawOval(256 - size, 256 - size, size * 2, size * 2);
float xDeflection = 0, yDeflection = 0;
if (x != 0 || y != 0) {
float distRange = 1 - 0.71f * deadzone;
float dist = distRange * (float)Math.sqrt(x * x + y * y) + deadzone;
double angle = Math.atan2(x, y);
xDeflection = dist * (float)Math.sin(angle);
xDeflection = Math.min(1, Math.max(-1, xDeflection));
yDeflection = dist * (float)Math.cos(angle);
yDeflection = Math.min(1, Math.max(-1, yDeflection));
}
draw(g, xDeflection, yDeflection);
}
}, "round");
cardLayout.show(centerPanel, (String)combo.getSelectedItem());
pack();
setLocationRelativeTo(null);
setVisible(true);
}
private abstract class Panel extends JPanel {
public void paintComponent (Graphics g) {
g.setColor(Color.gray);
g.fillRect(0, 0, getWidth(), getHeight());
g.setColor(Color.white);
g.fillRect(0, 0, 512, 512);
g.setColor(Color.green);
if (true) {
// Draws all edge points.
for (int i = -255; i < 256; i++)
toDeflection(g, i / 255f, 1);
for (int i = -255; i < 256; i++)
toDeflection(g, i / 255f, -1);
for (int i = -255; i < 256; i++)
toDeflection(g, 1, i / 255f);
for (int i = -255; i < 256; i++)
toDeflection(g, -1, i / 255f);
} else if (false) {
// Draws all possible points (slow).
for (int x = -255; x < 256; x++)
for (int y = -255; y < 256; y++)
toDeflection(g, x / 255f, y / 255f);
}
g.setColor(Color.red);
toDeflection(g, xState, yState);
}
abstract public void toDeflection (Graphics g, float x, float y);
public void draw (Graphics g, float xDeflection, float yDeflection) {
int r = 5, d = r * 2;
g.fillRect((int)(xDeflection * 256) + 256 - r, (int)(yDeflection * 256) + 256 - r, d, d);
}
}
public static void main (String[] args) {
new DeadzoneTest();
}
}
If you have a circular deadzone the .71 is actually 0.70710678 or the half of the squareroot of 2 Calculation thanks to theorem of Pythagoras
This is what I threw together. It behaves a bit wierd, but in the boundaries it's good:
private Point2D.Float calculateDeflection(float x, float y) {
Point2D.Float center = new Point2D.Float(0, 0);
Point2D.Float joyPoint = new Point2D.Float(x, y);
Double angleRad = Math.atan2(y, x);
float maxDist = getMaxDist(joyPoint);
float factor = (maxDist - deadzone) / maxDist;
Point2D.Float factoredPoint = new Point2D.Float(x * factor, y * factor);
float factoredDist = (float) center.distance(factoredPoint);
float finalDist = factoredDist + deadzone;
float finalX = finalDist * (float) Math.cos(angleRad);
float finalY = finalDist * (float) Math.sin(angleRad);
Point2D.Float finalPoint = new Point2D.Float(finalX, finalY);
return finalPoint;
}
Edit: missed this one.
private float getMaxDist(Point2D.Float point) {
float xMax;
float yMax;
if (Math.abs(point.x) > Math.abs(point.y)) {
xMax = Math.signum(point.x);
yMax = point.y * point.x / xMax;
} else {
yMax = Math.signum(point.y);
xMax = point.x * point.y / yMax;
}
Point2D.Float maxPoint = new Point2D.Float(xMax, yMax);
Point2D.Float center = new Point2D.Float(0, 0);
return (float) center.distance(maxPoint);
}
It preserves the angle, but scales the distance from somewhere between 0 and boundary to between deadzone and boundary. The maximum distance varies since it's 1 on the sides and sqrt(2) in the corners, so scaling must be altered accordingly.
I'd try to tackle the problem a bit differently. As I've understood your requirements, the algorithm should
- return the x/y values, if the joystick position is outside the deadzone
- return 0/y, x/0 or 0/0 if the joystick is (partially) inside the deadzone
Say the joystick is pushed up but x is inside the defined horizontal deadzone, you want the coordinate (0,y) as a result.
So in a first step, I'd test if the joystick coordinates are inside the defined deadzone. For a circle it's pretty easy, you just have to convert the x/y coordinates into a distance (Pythagoras) and check if this distance is less then the circles radius.
If it's outside, return (x/y). If it is inside, check for x and if the values are inside their horizontal or vertical deadzone.
Here's a draft to outline my idea:
private Point convertRawJoystickCoordinates(int x, int y, double deadzoneRadius) {
Point result = new Point(x,y); // a class with just two members, int x and int y
boolean isInDeadzone = testIfRawCoordinatesAreInDeadzone(x,y,radius);
if (isInDeadzone) {
result.setX(0);
result.setY(0);
} else {
if (Math.abs((double) x) < deadzoneRadius) {
result.setX(0);
}
if (Math.abs((double) y) < deadzoneRadius) {
result.setY(0);
}
}
return result;
}
private testIfRawCoordinatesAreInDeadzone(int x, int y, double radius) {
double distance = Math.sqrt((double)(x*x)+(double)(y*y));
return distance < radius;
}
Edit
The above idea uses raw coordinates, so assume the raw x value range is [-255,255], the radius is 2 and you set the joystick to the x values (-3,-2,-1,0,1,2,3), it will produce the sequence (-3,0,0,0,0,0,3). So the deadzone is blanked, but there's a jump from 0 to 3. If that is unwanted, we can 'stretch' the non-deadzone from ([-256,-radius],[radius,256]) to the (normalized) range ([-1,0],[0,1]).
So I just need to normalize the converted raw points:
private Point normalize(Point p, double radius) {
double validRangeX = MAX_X - radius;
double validRangeY = MAX_Y - radius;
double x = (double) p.getX();
double y = (double) p.getY();
return new Point((x-r)/validXRange, (y-r)/validYRange);
}
In brief: it normalizes the valid ranges (range minus deadzone radius) for x- and y-axis to [-1,1], so that raw_x=radius is converted to normalized_x=0.
(the method should work for positive and negative values. At least I hope it does, I have no IDE or JDK at hand at the moment to test ;) )
精彩评论