Use Digital Signal Processors to accelerate calculations in the same fashion than GPUs
I read that several DSP cards that process audio, can calculate very fast Fourier Transforms and some other functions involved in Sound processing and others. There are some scientific problems (not many), like Quantum mechanics, that involver Fourier Transform calculations. I wonder if DSP could be used to accelerate calculations in this fashion, like GPUs do in some other cases, and if you开发者_如何学JAVA know succcessful examples.
Thanks
Any linear operations are easier and faster to do on DSP chips. Their architecture allows you to perform a linear operation (take two numbers, multiply each of them by a constant and add the results) in a single clock cycle. This is one of the reasons FFT can be calculated so quickly on a DSP chip. This is also a reason many other linear operations can be accelerated with their use. I guess I have three main points to make concerning performance and code optimization for such processors.
1) Perhaps less relevant, but I'd like to mention it nonetheless. In order to take full advantage of DSP processor's architecture, you have to code in Assembly. I'm pretty sure that regular C code will not be fully optimized by the compiler to do what you want. You literally have to specify each register, etc. It does pay off, however. The same way, you are able to make use of circular buffers and other DSP-specific things. Circular buffers are also very useful for calculating the FFT and FFT-based (circular) convolution.
2) FFT can be found in solutions to many problems, such as heat flow (Fourier himself actually came up with the solution back in the 1800s), analysis of mechanical oscillations (or any linear oscillators for that matter, including oscillators in quantum physics), analysis of brain waves (EEG), seismic activity, planetary motion and many other things. Any mathematical problem that involves convolution can be easily solved via the Fourier transform, analog or discrete.
3) For some of the applications listed above, including audio processing, other transforms other than FFT are constantly being invented, discovered, and applied to processing, such as Mel-Cepstrum (e.g. MPEG codecs), wavelet transform (e.g. JPEG2000 codecs), discrete cosine transform (e.g. JPEG codecs) and many others. In quantum physics, however, the Fourier Transform is inherent in the equation of angular momentum. It arises naturally, not just for the purposes of analysis or easy of calculations. For this reason, I would not necessarily put the reasons to use Fourier Transform in audio processing and quantum mechanics into the same category. For signal processing, it's a tool; for quantum physics, it's in the nature of the phenomenon.
Before GPUs and SIMD instruction sets in mainstream CPUs this was the only way to get performance for some applications. In the late 20th Century I worked for a company that made PCI cards to place extra processors in a PCI slot. Some of these were DSP cards using a TI C64x DSP, others were PowerPC cards to provide Altivec. The processor on the cards would typically have no operating system to give more predicatable real-time scheduling than the host. Customers would buy an industrial PC with a large PCI backplace, and attach multiple cards. We would also make cards in form factors such as PMC, CompactPCI, and VME for more rugged environments.
People would develop code to run on these cards, and host applications which communicated with the add-in card over the PCI bus. These weren't easy platforms to develop for, and the modern libraries for GPU computing are much easier.
Nowadays this is much less common. The price/performance ratio is so much better for general purpose CPUs and GPUs, and DSPs for scientific computing are vanishing. Current DSP manufacturers tend to target lower power embedded applications or cost sensitive high volume devices like digital cameras. Compare GPUFFTW with these Analog Devices benchmarks. The DSP peaks at 3.2GFlops, and the Nvidia 8800 reachs 29GFlops.
精彩评论