replace values in an array
as a replacement value for another within 开发者_StackOverflow社区an operation with arrays, or how to search within an array and replace a value by another
for example:
array ([[NaN, 1., 1., 1., 1., 1., 1.]
[1., NaN, 1., 1., 1., 1., 1.]
[1., 1., NaN, 1., 1., 1., 1.]
[1., 1., 1., NaN, 1., 1., 1.]
[1., 1., 1., 1., NaN, 1., 1.]
[1., 1., 1., 1., 1., NaN, 1.]
[1., 1., 1., 1., 1., 1., NaN]])
where it can replace NaN by 0. thanks for any response
You could do this:
import numpy as np
x=np.array([[np.NaN, 1., 1., 1., 1., 1., 1.],[1., np.NaN, 1., 1., 1., 1., 1.],[1., 1., np.NaN, 1., 1., 1., 1.], [1., 1., 1., np.NaN, 1., 1., 1.], [1., 1., 1., 1., np.NaN, 1., 1.],[1., 1., 1., 1., 1., np.NaN, 1.], [1., 1., 1., 1., 1., 1., np.NaN]])
x[np.isnan(x)]=0
np.isnan(x)
returns a boolean array which is True
wherever x
is NaN
.
x[ boolean_array ] = 0
employs fancy indexing to assign the value 0 wherever the boolean array is True
.
For a great introduction to fancy indexing and much more, see also the numpybook.
these days there is the special function:
a = numpy.nan_to_num(a)
Here is the example array in the question:
import numpy as np
a = np.where(np.eye(7), np.nan, 1)
You can either use numpy.where and numpy.isnan functions to create a new array b
:
b = np.where(np.isnan(a), 0, a)
Or use an in-place function to directly modify the a
array:
np.place(a, np.isnan(a), 0) # returns None
精彩评论