creating deformations on a sphere surface (using python?)
Hi :) i have the following python code that generates points lying on a sphere's surface
from math import sin, cos, pi
toRad = pi / 180
ox = 10
oy = -10
oz = 50
radius = 10.0
radBump = 3.0
angleMin = 0
angleMax = 360
angleOffset = angleMin * toRad
angleRange = (angleMax - angleMin) * toRad
steps = 48
angleStep = angleRange / steps
latMin = 0
latMax = 180
latOffset = latMin * toRad
if (latOffset < 0):
latOffset = 0;
latRange = (latMax - latMin) * toRad
if (latRange > pi):
latRange = pi -开发者_运维技巧 latOffset;
latSteps = 48
latAngleStep = latRange / latSteps
for lat in range(0, latSteps):
ang = lat * latAngleStep + latOffset
z = cos(ang) * radius + oz
radMod = sin(ang) * radius
for a in range(0, steps):
x = sin(a * angleStep + angleOffset) * radMod + ox
y = cos(a * angleStep + angleOffset) * radMod + oy
print "%f %f %f"%(x,y,z)
after that i plot the points with gnuplot using splot 'datafile'
can you give any hints on how to create deformations on that sphere? like "mountains" or "spikes" on it? (something like the openbsd logo ;) : https://https.openbsd.org/images/tshirt-23.gif )
i know it is a trivial question :( but thanks for your time :)
DsP
The approach that springs to my mind, especially with the way you compute a set of points that are not explicitly connected, is to find where the point goes on the sphere's surface, then move it by a distance and direction determined by a set of control points. The control points could have smaller effects the further away they are. For example:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
dx = p.x - x
dy = p.y - y
dz = p.z - z
xDisplace += 1/(dx*dx)
yDisplace += 1/(dy*dy)
zDisplace += 1/(dz*dz) # using distance^2 displacement
x += xDisplace
y += yDisplace
z += zDisplace
By changing the control points you can alter the sphere's shape By changing the movement function, you can alter the way the points shape the sphere You could get really tricky and have different functions for different points:
# we have already computed a points position on the sphere, and
# called it x,y,z
for p in controlPoints:
xDisplace += p.displacementFunction(x)
yDisplace += p.displacementFunction(y)
zDisplace += p.displacementFunction(z)
x += xDisplace
y += yDisplace
z += zDisplace
If you do not want all control points affecting every point in the sphere, just build that into the displacement function.
How's this?
from math import sin, cos, pi, radians, ceil
import itertools
try:
rng = xrange # Python 2.x
except NameError:
rng = range # Python 3.x
# for the following calculations,
# - all angles are in radians (unless otherwise specified)
# - latitude is in [-pi/2..pi/2]
# - longitude is in [-pi..pi)
MIN_LAT = -pi/2 # South Pole
MAX_LAT = pi/2 # North Pole
MIN_LON = -pi # Far West
MAX_LON = pi # Far East
def floatRange(start, end=None, step=1.0):
"Floating-point range generator"
start += 0.0 # cast to float
if end is None:
end = start
start = 0.0
steps = int(ceil((end-start)/step))
return (start + k*step for k in rng(0, steps+1))
def patch2d(xmin, xmax, ymin, ymax, step=1.0):
"2d rectangular grid generator"
if xmin>xmax:
xmin,xmax = xmax,xmin
xrange = floatRange(xmin, xmax, step)
if ymin>ymax:
ymin,ymax = ymax,ymin
yrange = floatRange(ymin, ymax, step)
return itertools.product(xrange, yrange)
def patch2d_to_3d(xyIter, zFn):
"Convert 2d field to 2.5d height-field"
mapFn = lambda a: (a[0], a[1], zFn(a[0],a[1]))
return itertools.imap(mapFn, xyIter)
#
# Representation conversion functions
#
def to_spherical(lon, lat, rad):
"Map from spherical to spherical coordinates (identity function)"
return lon, lat, rad
def to_cylindrical(lon, lat, rad):
"Map from spherical to cylindrical coordinates"
# angle, z, radius
return lon, rad*sin(lat), rad*cos(lat)
def to_cartesian(lon, lat, rad):
"Map from spherical to Cartesian coordinates"
# x, y, z
cos_lat = cos(lat)
return rad*cos_lat*cos(lon), rad*cos_lat*sin(lon), rad*sin(lat)
def bumpySphere(gridSize, radiusFn, outConv):
lonlat = patch2d(MIN_LON, MAX_LON, MIN_LAT, MAX_LAT, gridSize)
return list(outConv(*lonlatrad) for lonlatrad in patch2d_to_3d(lonlat, radiusFn))
# make a plain sphere of radius 10
sphere = bumpySphere(radians(5.0), lambda x,y: 10.0, to_cartesian)
# spiky-star-function maker
def starFnMaker(xWidth, xOffset, yWidth, yOffset, minRad, maxRad):
# make a spiky-star function:
# longitudinal and latitudinal triangular waveforms,
# joined as boolean intersection,
# resulting in a grid of positive square pyramids
def starFn(x, y, xWidth=xWidth, xOffset=xOffset, yWidth=yWidth, yOffset=yOffset, minRad=minRad, maxRad=maxRad):
xo = ((x-xOffset)/float(xWidth)) % 1.0 # xo in [0.0..1.0), progress across a single pattern-repetition
xh = 2 * min(xo, 1.0-xo) # height at xo in [0.0..1.0]
xHeight = minRad + xh*(maxRad-minRad)
yo = ((y-yOffset)/float(yWidth)) % 1.0
yh = 2 * min(yo, 1.0-yo)
yHeight = minRad + yh*(maxRad-minRad)
return min(xHeight, yHeight)
return starFn
# parameters to spike-star-function maker
width = 2*pi
horDivs = 20 # number of waveforms longitudinally
horShift = 0.0 # longitudinal offset in [0.0..1.0) of a wave
height = pi
verDivs = 10
verShift = 0.5 # leave spikes at the poles
minRad = 10.0
maxRad = 15.0
deathstarFn = starFnMaker(width/horDivs, width*horShift/horDivs, height/verDivs, height*verShift/verDivs, minRad, maxRad)
deathstar = bumpySphere(radians(2.0), deathstarFn, to_cartesian)
so i finally created the deformation using a set of control points that "pull" the spherical surface. it is heavilly OO and ugly though ;) thanks for all the help !!! to use it > afile and with gnuplot : splot 'afile' w l
DsP
from math import sin, cos, pi ,sqrt,exp
class Point:
"""a 3d point class"""
def __init__(self,x,y,z):
self.x = x
self.y = y
self.z = z
def __repr__(self):
return "%f %f %f\n"%(self.x,self.y,self.z)
def __str__(self):
return "point centered: %f %f %f\n"%(self.x,self.y,self.z)
def distance(self,b):
return sqrt((self.x - b.x)**2 +(self.y - b.y)**2 +(self.z -b.z)**2)
def displaceTowards(self,b):
self.x
class ControlPoint(Point):
"""a control point that deforms positions of other points"""
def __init__(self,p):
Point.__init__(self,p.x,p.y,p.z)
self.deformspoints=[]
def deforms(self,p):
self.deformspoints.append(p)
def deformothers(self):
self.deformspoints.sort()
#print self.deformspoints
for i in range(0,len(self.deformspoints)):
self.deformspoints[i].x += (self.x - self.deformspoints[i].x)/2
self.deformspoints[i].y += (self.y - self.deformspoints[i].y)/2
self.deformspoints[i].z += (self.z - self.deformspoints[i].z)/2
class Sphere:
"""returns points on a sphere"""
def __init__(self,radius,angleMin,angleMax,latMin,latMax,discrStep,ox,oy,oz):
toRad = pi/180
self.ox=ox
self.oy=oy
self.oz=oz
self.radius=radius
self.angleMin=angleMin
self.angleMax=angleMax
self.latMin=latMin
self.latMax=latMax
self.discrStep=discrStep
self.angleRange = (self.angleMax - self.angleMin)*toRad
self.angleOffset = self.angleMin*toRad
self.angleStep = self.angleRange / self.discrStep
self.latOffset = self.latMin*toRad
self.latRange = (self.latMax - self.latMin) * toRad
self.latAngleStep = self.latRange / self.discrStep
if(self.latOffset <0):
self.latOffset = 0
if(self.latRange > pi):
self.latRange = pi - latOffset
def CartesianPoints(self):
PointList = []
for lat in range(0,self.discrStep):
ang = lat * self.latAngleStep + self.latOffset
z = cos(ang) * self.radius + self.oz
radMod = sin(ang)*self.radius
for a in range(0,self.discrStep):
x = sin(a*self.angleStep+self.angleOffset)*radMod+self.ox
y = cos(a*self.angleStep+self.angleOffset)*radMod+self.oy
PointList.append(Point(x,y,z))
return PointList
mysphere = Sphere(10.0,0,360,0,180,50,10,10,10)
mylist = mysphere.CartesianPoints()
cpoints = [ControlPoint(Point(0.0,0.0,0.0)),ControlPoint(Point(20.0,0.0,0.0))]
deforpoints=[]
for cp in cpoints:
for p in mylist:
if(p.distance(cp) < 15.0):
cp.deforms(p)
"""print "cp ",cp,"deforms:"
for dp in cp.deformspoints:
print dp ,"at distance", dp.distance(cp)"""
cp.deformothers()
out= mylist.__repr__()
s = out.replace(","," ")
print s
精彩评论