目录一、数据集二、数据分析1 数据导入2 数据特征探索(数据可视化)三、特征优化四、对特征构造后的训练集和测试集进行主成分分析五、使用LightGBM模型进行训练和预测一、数据集
目录一、Introduction1 LightGBM的优点2 LightGBM的缺点二、实现过程1 数据集介绍2 Coding三、KeysLightGBM的重要参数基本参数调整针对训练速度的参数调整针对准确率的参数调整针对过拟合的参数调整一、Introduction
目录一、数据集二、实www.cppcns.com现过程1 数据特征分析2 利用决策树模型在二分类上进行训练和预测3 利用决策树模型在多分类(三分类)上进行训练与预测三、KEYS1 构建过程2 划分选择3 重要参数一、数据集
目录1、Question?2、Answer!——SVM3、软间隔4、超平面支持向量机常用于数据分类,也可以用于数据的回归预测