开发者

Python异步爬虫多线程与线程池示例详解

目录
  • 背景
  • 异步爬虫方式
    • 多线程,多进程(不建议)
    • 线程池,进程池(适当使用)
    • 单线程+异步协程(推荐)
      • 多线程
      • 线程池

背景

当对多个url发送请求时,只有请求完第一个url才会接着请求第二个url(requests是一个阻塞的操作),存在等待的时间,这样效率是很低的。那我们能不能在发送请求等待的时候,为其单独开启进程或者线程,继续请求下一个url,执行并行请求

异步爬虫方式

多线程,多进程(不建议)

好处:可以为相关阻塞的操作单独开启线程或者进程,阻塞操作就可以异步会执行

弊端:不能无限制开启多线程或者多进程(需要频繁的创建或者销毁进程,线程)

线程池,进程池(适当使用)

好处:可以降低系统对进程或线程创建和销毁的频率,从而很好的而降低系统的开销

弊端:线程或进程池中的数量是有上限的

单线程+异步协程(推荐)

多线程

正常运行如下的代码,需要花费8秒钟的时间,因为sleep是一个阻塞的操作,在等待的时候不会执行别的操作,极大地降低了效率

from time imwww.cppcns.comport sleep
import time
start = time.time()
def xx(str):
    print('正在下载:', str)
    sleep(2)
str = ['xiaozi', 'aa', 'bb', 编程客栈'cc']
for i in str:
    xx(i)
end = time.time()
print('程序运行时间:',end-start)

Python异步爬虫多线程与线程池示例详解

使用多线程后

from threading import Thread
from time import sleep
import time
start = time.time()
def xx(str):
        print('正在下载:',str)
        sleep(2)
str =编程客栈  ['xiaozi','aa','bb','cc']
def main():
    for s in str:
        #开启线程,target=函数名,args=(xx,) ,xx为向函数传递的参数,必须为元组类型,所以后面需要加,
        t = Thread(target=xx,args=(s,))
        t.start()
if __name__ == '__main__':
    main()
    end = time.time()
    print('程序运行时间:',end-start)

但是我们发现下面的运行顺序貌似有点乱的

Python异步爬虫多线程与线程池示例详解

线程池

对上面的改为线程池后运行

#倒入线程池模块对应的类
from multiprocessing.dummy import Pool
from time i编程客栈mport sleep
import time
start = time.time()
def xx(str):
        print('正在下载:',str)
        sleep(2)
str =  ['xiaozi','aa','bb','cc']
#实例化一个线程池对象,线程池中开辟四个线程对象,并行4个线程处理四个阻塞操作
pool = Pool(4)
#将列表中的每一个列表元素(可迭代对象)传递给xx函数(发生阻塞的操作)进行处理
#map方法会有一个返回值为函数的返回值(一个列表),但是这里没有返回值所以不考虑
#调用map方法
pool.map(xx,str)
end = time.time()
prmRiErQuint('程序运行时间:',end-start)

Python异步爬虫多线程与线程池示例详解

以上就是python异步爬虫多线程与线程池示例详解的详细内容,更多关于Python异步多线程与线程池的资料请关注我们其它相关文章!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜