PyTorch加载模型model.load_state_dict()问题及解决
目录
- PyTorch加载模型model.load_state_dict()问题
- 1. 对load的模型创建新的字典
- 2. 直接用空白''代替'module.'
- 3. 最简单的方法
- 4. 总结
- 最后
PyTorch加载模型model.load_state_dict()问题
希望将训练好的模型加载到新的网络上。
如上面题目所描述的,PyTorch在加载之前保存的模型参数的时候,遇到了问题。
Unexpected key(s) in state_dict: "module.features. ...".,Expected ".features....". 直接原因是key值名字不对应。
表明了加载过程中,期望获得的key值为feature...,而不是module.fea开发者_JS教程tures....。
这是由模型保存过程中导致的,模型应该是在DataParallel模式下面,也就是采用了多GPU训练模型,然后直接保存的。
You probably saved the model using nn.DataParallel, which stores the model in module, and now you are trying to load it without . You can either add a nn.DataParallel temporarily in your network for loading purposes, or you can load the weights file, create a new ordered dict without the module prefix, and load it back.
解决上面的问题有三个办法:
1. 对load的模型创建新的字典
去掉不需要的key值"module".
# original saved file with DataParallel state_dict = torch.load('checkpoint.pt') # 模型可以保存为pth文件,也可以为pt文件。 # create new OrderedDict that does not contain `module.` from collections import OrderedDict new_state_dict = OrderedDict() www.devze.comfor k, v in state_dict.items(): name = k[7:] # remove `module.`,表面从第7个key值字符取到最后一个字符,正好去掉了module. new_state_dict[name] = v #新字典的key值对应的编程客栈value为一一对应的值。 # load params model.load_state_dict(new_state_dict) # 从编程客栈新加载这个模型。
2. 直接用空白''代替'module.'
model.load_state_dict({k.replace('module.',''):v for k,v in torch.load('checkpoint.pt').items()}) # 相当于用''代替'module.'。 #直接使得需要的键名等于期望的键名。
3. 最简单的方法
加载模型之后,接着将模型DataParallel编程客栈,此时就可以load_state_dict。
如果有多个GPU,将模型并行化,用DataParallel来操作。
这个过程会将key值加一个"module. ***"。
model = VGGNet() params=model.state_dict() #获得模型的原始状态以及参数。 for k,v in params.items(): print(k) #只打印key值,不打印具体参数。
4. 总结
从出错显示的问题就可以看出,key值不匹配,因此可以选择多种方法,将模型参数加载进去。
这个方法通常会在load_state_dict过程中遇到。将训练好的一个网络参数,移植到另外一个网络上面,继续训练。
或者将训练好的网络checkpoint加载进模型,再次进行训练。可以打印出model state_dict来看出两者的差别。
model = VGGNet() params=model.state_dict() #获得模型的原始状态以及参数。 for k,v in params.items(): print(k) #只打印key值,不打印具体参数。
features.0.0.weight
features.0.1.weightfeatures.1.conv.3.weightfeatures.1.conv.4.num_BATches_tracked
model = VGGNet() checkpoint = torch.load('checkpoint.pt', map_location='cpu') # Load weights to resume from checkpoint。 # print('**************************************') # 这个方法能够直接打印出你保存的checkpoint的键和值。 for k,v in checkpoint.items(): print(k) androidprint("*****************************************")
输出结果为:
module.features.0.0.weight",
"module.features.0.1.weight",
"module.features.0.1.bias
可以看出不匹配,模型的参数中,key值不同,多了module。
PS: 追加
在移植参数的过程中,对于出现 .total_ops和.total_params结尾的参数,可参考以下代码:
from collections import OrderedDict checkpoint = torch.load( pretrained_model_file_path, map_location=(None if use_cuda and not remap_to_cpu else "cpu")) new_state_dict = OrderedDict() for k, v in checkpoint.items(): if not k.endswith('total_ops') and not k.endswith('total_params'): name = k[7:] new_state_dict[name] = v
最后
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
精彩评论