开发者

pytorch transform数据处理转c++问题

目录
  • pytorch transform数据处理转c++
    • 1.python代码
    • 2.transforms.Resize(256)
    • 3.transforms.ToTensor()
  • 总结

    pytorch transform数据处理转c++

    python推理代码转c++ sdk过程遇到pytorch数据处理的转换

    1.python代码

    import torch
    from PIL import Image
    from torchvision import transforms
    
    data_transform = transforms.Compose(
      [transforms.Resize(256),
       transforms.CenterCrop(224),
       transforms.ToTensor(),
       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
    
    img = Image.open(img_path)
    img = data_transform(img)

    2.transforms.Resize(256)

    Parameters

    size (sequence or int) –

    Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to thihttp://www.devze.coms number. i.e, if height > width, then image will be rescaled to (size * height / width, size).

    3.transforms.ToTensor(开发者_自学开发)

    Convert a PIL Image or numpy.ndarray to tensor. This transform does not support torchscript.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8

    cv::Mat ClsSixPrivate::processImage(cv::Mat &img) {
     int inW = img.cols;
     int inH = img.rows;
     cv::Mat croped_image;
     if (inW > inH)
     {
      int newWidth = 256 * inW / inH;
      cv::resize(img, img, cv::Size(newWidth, 256), 0, 0, cv::INTER_LINEAR);
      croped_image = img(cv::Rect((newWidth - 224) / 2, 16, 224, 224)).clone();
     }
     else {
      int newHeight= 256 * inH / pythoninW;
      cv::resize(img, img, cv::Size(2javascript56, newHeight), 0, 0, cv::INTER_LINEAR);
      croped_image = img(cv::Rect(16, (newHeight - 224) / 2, 224, 224)).clone();
     }
     
     std::vector<float> mean_value{ 0.485, 0.456,0.406 };
     std::vector<float> std_value{ 0.229, 0.224, 0.225 };
     cv::Mat dst;
     std::http://www.devze.comvector<cv::Mat> rgbChannels(3);
     cv::split(croped_image, rgbChannels);
    
     for (auto niivSzdi = 0; i < rgbChannels.size(); i++)
     {
      rgbChannels[i].convertTo(rgbChannels[i], CV_32FC1, 1.0 / (std_value[i] * 255.0), (0.0 - mean_value[i]) / std_value[i]);
     }
    
     cv::merge(rgbChannels, dst);
     return dst;
    }

    总结

    以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

    0

    上一篇:

    下一篇:

    精彩评论

    暂无评论...
    验证码 换一张
    取 消

    最新开发

    开发排行榜