pytorch transform数据处理转c++问题
目录
- pytorch transform数据处理转c++
- 1.python代码
- 2.transforms.Resize(256)
- 3.transforms.ToTensor()
- 总结
pytorch transform数据处理转c++
python推理代码转c++ sdk过程遇到pytorch数据处理的转换
1.python代码
import torch from PIL import Image from torchvision import transforms data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) img = Image.open(img_path) img = data_transform(img)
2.transforms.Resize(256)
Parameters
size (sequence or int) –Desired output size. If size is a sequence like (h, w), output size will be matched to this. If size is an int, smaller edge of the image will be matched to thihttp://www.devze.coms number. i.e, if height > width, then image will be rescaled to (size * height / width, size).
3.transforms.ToTensor(开发者_自学开发)
Convert a PIL Image or numpy.ndarray to tensor. This transform does not support torchscript.
Converts a PIL Image or numpy.ndarray (H x W x C) in the range [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8
cv::Mat ClsSixPrivate::processImage(cv::Mat &img) { int inW = img.cols; int inH = img.rows; cv::Mat croped_image; if (inW > inH) { int newWidth = 256 * inW / inH; cv::resize(img, img, cv::Size(newWidth, 256), 0, 0, cv::INTER_LINEAR); croped_image = img(cv::Rect((newWidth - 224) / 2, 16, 224, 224)).clone(); } else { int newHeight= 256 * inH / pythoninW; cv::resize(img, img, cv::Size(2javascript56, newHeight), 0, 0, cv::INTER_LINEAR); croped_image = img(cv::Rect(16, (newHeight - 224) / 2, 224, 224)).clone(); } std::vector<float> mean_value{ 0.485, 0.456,0.406 }; std::vector<float> std_value{ 0.229, 0.224, 0.225 }; cv::Mat dst; std::http://www.devze.comvector<cv::Mat> rgbChannels(3); cv::split(croped_image, rgbChannels); for (auto niivSzdi = 0; i < rgbChannels.size(); i++) { rgbChannels[i].convertTo(rgbChannels[i], CV_32FC1, 1.0 / (std_value[i] * 255.0), (0.0 - mean_value[i]) / std_value[i]); } cv::merge(rgbChannels, dst); return dst; }
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
精彩评论