开发者

Pytorch中的数据转换Transforms与DataLoader方式

目录
  • DataLoader
  • 数据变换(Transform)
  • torchvision 包的介绍
    • torchvision.datasets
    • torchvision.models
    • torchvision.transforms
  • Transforms支持的变化
    • 对PIL.Image进行变换
      • 总结

        DataLoader

        DataLoader是一个比较重要的类,它为我们提供的常用操作有:

        • BATch_size(每个batch的大小)
        • shuffle(是否进行shuffle操作)
        • num_workers(加载数据的时候使用几个子进程)
        import torch as t
        import torch.nn as nn
        import torch.nn.functional as F
        
        import torch
        '''
        初始化网络
        初始化Loss函数 & 优化器
        进入step循环:
          梯度清零
          向前传播
          计算本次Loss
          向后传播
          更新参数
        '''
        class LeNet(nn.Module):
          def __init__(self):
            super(LeNet, self).__init__()
            self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
            self.conv2_drop = nn.Dropout2d()
            self.fc1 = nn.Linear(320, 50)
            self.fc2 = nn.Linear(50, 10)
          def forward(self, x):
            x = F.relu(F.max_pool2d(self.conv1(x), 2))
            x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
            x = x.view(-1, 320)
            x = F.relu(self.fc1(x))
            x = F.dropout(x, training=self.training)
            x = self.fc2(x)
            return x
        
        
        if __name__ == "__main__":
          net = LeNet()
        
          # #########训练网络#########
          from torch import optim
          # from torchvision.datasets import MNIST
          import torchvision
          import numpy
          from torchvision import transforms
          from torch.utils.data import DataLoader
        
          # 初始化Loss函数 & 优化器
          loss_fn = nn.CrossEntropyLoss()
          optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
        
          # transforms = transforms.Compose([])
        
          DOWNLOAD = False
          BATCH_SIZE = 32
          transform = transforms.Compose([
            transforms.ToTensor()
          ])
          #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
        
          train_dataset = torchvision.datasets.MNIST(root='./', train=True, transform=transform, download=DOWNLOAD)
          test_dataset = torchvision.datasets.MNIST(root='./data/mnist',
                               train=False,
                               transform=torchvision.transforms.ToTensor(),
                               download=True)
         
          train_loader = DataLoader(dataset=train_dataset,
                       batch_size=BATCH_SIZE,
                       shuffle=True)
          test_loader = DataLoader(dataset=test_dataset, batch_size=BATCH_SIZE)
        
          for epoch in range(200):
            running_loss = 0.0
            for step, data in enumerate(train_loader): 
              inputs, labels = data
              inputs, labels = t.autograd.Variable(inputs), t.autograd.Variable(labels)
              # inputs = torch.from_numpy(inputs).unsqueeze(1)
              # labels = torch.from_numpy(numpy.array(labels))
              # 梯度清零
              optimizer.zero_grad()
        
              # forward
              outputs = net(inputs)
              # backward
              loss = loss_fn(outputs, labels)
              loss.backward()
              # update
              optimizer.step()
        
              running_loss += loss.item()
              if step % 10 == 9:
                print("[{0:d}, {1:5d}] loss: {2:3f}".format(epoch + 1, step + 1, running_loss / 2000))
                running_loss = 0.
          print("Finished Training")
        
         # save the trained net
          torch.save(net, 'net.pkl')
        
          # load the trained net
          net1 = torch.load('net.pkl')
        
          # test the trained net
          correct = 0
          total = 1
          for images, labels in test_loader:
            preds = net(images)
            predicted = torch.argmax(preds, 1)
            total += labels.size(0)
            correct += (predicted == labels).sum().item()
        
          accuracy = correct / total
          print('accuracy of test data:{:.1%}'.format(accuracy))

        数据变换(Transform)

        实例化数据库的时候,有一个可选的参数可以对数据进行转换,满足大多神经网络的要求输入固定尺寸的图片,因此要对原图进行Rescale或者Crop操作,然后返回的数据需要转换成Tensor。

        数据转换(Transfrom)发生在数据库中的__getitem__操作中。

        class Rescale(object):
          """Rescale the image in a sample to a given size.
        
          Args:
            output_size (tuple or int): Desired output size. If tuple, output is
              matched to output_size. If int, smaller of image edges is matched
              to output_size keeping ASPect ratio the same.
          """
        
          def __init__(self, output_sizephp):
            assert isinstance(output_size, (int, tuple))
            self.output_size = output_size
        
          GZhfqdef __call__(self, sample):
            image, landmarks = sample['image'], sample['landmarks']
        
            h, w = image.shape[:2]
            if isinstance(self.output_size, int):
              if h > w:
                new_h, new_w = self.output_size * h / w, self.output_size
              else:
                new_h, new_w = self.output_size, self.output_size * w / h
            else:
              new_h, new_w = self.output_size
        
            new_h, new_w = int(new_h), int(new_w)
        
            img = transform.resize(image, (new_h, new_w))
        
            # h and w are swapped for landmarks because开发者_Go学习 for images,
            # x and y axes are axis 1 and 0 respectively
            landmarks = landmarks * [new_w / w, new_h / h]
        
            return {'image': img, 'landmarks': landmarks}
        
        
        class RandomCrop(object):
          """Crop randomly the image in a sample.
        
          Args:
            output_size (tuple or int): Desired output size. If int, square crop
              is made.
          """
        
          def __init__(self, output_size):
            assert isinstance(output_size, (int, tuple))
            if isinstance(output_size, int):
              self.output_size = (output_size, output_size)
            else:
              assert len(output_size) == 2
              self.output_size = output_size
        
          def __call__(self, sample):
            image, landmarks = sample[编程客栈'image'], sample['landmarks']
        
            h, w = image.shape[:2]
            new_h, new_w = self.output_size
        
            top = np.random.randint(0, h - new_h)
            left = np.random.randint(0, w - new_w)
        
            image = image[top: top + new_h,
                   left: left + new_w]
        
            landmarks = landmarks - [left, top]
        
            return {'image': image, 'landmarkspython': landmarks}
        
        
        class ToTensor(object):
          """Convert ndarrays in sample to Tensors."""
        
          def __call__(self, sample):
            image, landmarks = sample['image'], sample['landmarks']
        
            # swap color axis because
        js    # numpy image: H x W x C
            # torch image: C X H X W
            image = image.transpose((2, 0, 1))
            return {'image': torch.from_numpy(image),
                'landmarks': torch.from_numpy(landmarks)}

        torchvision 包的介绍

        torchvision 是PyTorch中专门用来处理图像的库,这个包中有四个大类。

        torchvision.datasets
        torchvision.models
        torchvision.transforms
        torchvision.utils

        torchvision.datasets

        torchvision.datasets 是用来进行数据加载的,PyTorch团队在这个包中帮我们提前处理好了很多很多图片数据集。

        MNIST、COCO、Captions、Detection、LSUN、ImageFolder、Imagenet-12、CIFAR、STL10、SVHN、PhotoTour

        import torchvision
        from torch.utils.data import DataLoader
        
        DOWNLOAD = False
        BATCH_SIZE = 32
        transform = transforms.Compose([
          transforms.ToTensor()
        ])
        #transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
        
        train_dataset = torchvision.datasets.MNIST(root='./', train=True, transform=transform, download=DOWNLOAD)
        
        train_loader = DataLoader(dataset=train_dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True)

        torchvision.models

        torchvision.models 中为我们提供了已经训练好的模型,加载之后,可以直接使用。包含以下模型结构。

        AlexNet、VGG、ResNet、SqueezeNet、DenseNet、MobileNet

        import torchvision.models as models
        resnet18 = models.resnet18(pretrained=True)
        alexnet = models.alexnet(pretrained=True)

        torchvision.transforms

        transforms提供了一般图像的转化操作类

        # 图像预处理步骤
        transform = transforms.Compose([
          transforms.Resize(96), # 缩放到 96 * 96 大小
          transforms.ToTensor(),
          transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # 归一化
        ])

        Transforms支持的变化

        参考Pytorch中文文档

        __all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
             "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
             "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
             "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
             "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
             "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
        from PIL import Image
        # from torch.utils.tensorboard import SummaryWriter
        from torchvision import transforms
        
        from torch.autograd import Variable
        from torchvision.transforms import functional as F
        
        tensor数据类型
        # 通过transforms.ToTensor去看两个问题
        
        img_path = "./k.jpg"
        img = Image.open(img_path)
        
        # writer = SummaryWriter("logs")
        
        tensor_trans = transforms.ToTensor()
        tensor_img = tensor_trans(img)
        
        tensor_img1 = F.to_tensor(img)
        
        print(tensor_img.type(),tensor_img1.type())
        print(tensor_img.shape)
        
        '''
        transforms.Normalize使用如下公式进行归一化:
        channel=(channel-mean)/std(因为transforms.ToTensor()已经把数据处理成[0,1],那么(x-0.5)/0.5就是[-1.0, 1.0])
        '''
        
        # writer.add_image("Tensor_img", tensor_img)
        # writer.close()

        将输入的PIL.Image重新改变大小成给定的size,size是最小边的边长。

        举个例子,如果原图的height>width,那么改变大小后的图片大小是(size*height/width, size)。

        ### class torchvision.transforms.Scale(size, interpolation=2)
        
        ```python
        from torchvision import transforms
        from PIL import Image
        crop = transforms.Scale(12)
        img = Image.open('test.jpg')
        
        print(type(img))
        print(img.size)
        
        croped_img=crop(img)
        print(type(croped_img))
        print(croped_img.size)

        对PIL.Image进行变换

        class torchvision.transforms.Compose(transforms)

        将多个transform组合起来使用。

        class torchvision.transforms.Normalize(mean, std)

        给定均值:(R,G,B) 方差:(R,G,B),将会把Tensor正则化。即:Normalized_image=(image-mean)/std。

        class torchvision.transforms.RandomSizedCrop(size, interpolation=2)

        先将给定的PIL.Image随机切,然后再resize成给定的size大小。

        class torchvision.transforms.RandomCrop(size, padding=0)

        切割中心点的位置随机选取。size可以是tuple也可以是Integer。

        class torchvision.transforms.CenterCrop(size)

        将给定的PIL.Image进行中心切割,得到给定的size,size可以是tuple,(target_height, target_width)。size也可以是一个Integer,在这种情况下,切出来的图片的形状是正方形。

        总结

        以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

        0

        上一篇:

        下一篇:

        精彩评论

        暂无评论...
        验证码 换一张
        取 消

        最新开发

        开发排行榜