开发者

Pandas条件筛选与组合筛选的使用

目录
  • 条件筛选
  • 组合筛选

在使用pandas进行数据分析时,经常需要根据逻辑条件来筛选数据。

如果使用 for循环语句 遍历的方式来查找,将十分耗时。

推荐使用pandas自身的功能函数进行筛选,效率更高。

以下列出笔者常用的筛选方法。

条件筛选

根据具体值筛选

df[df['Num'] == 10]
df[df['Name'] == 'Tom']

找出df中值在具体列表中的数据

val_list =编程 [100, 200, 300]
df[df['Num'].isin(val_list)]

筛选某列值长度为固定值的数据

df[df['content'].str.len(android) == 10]
开发者_开发学习

筛选某列是否为空的数据

# 找出content列为空的数据
df[df['content'].isna()]

# 找出content不为空的数据
df[~df['content'].isna()]

组合筛选

多条件同时满足

# 找出df编程中A列值为100 且 B列值为‘a'的所有数据
df[(df['A']==100)&(df['B']=='a')]

多条件满足其一即可

# 找出df中A列值为100或B列值为‘b'的所有数据
df[(df['A']==100)|(df['B']=='b')]

注:筛选后所得数据的索引一般是乱的,可使用 df = df.reset_index(drop=True) 的方式重www.devze.com置android索引。

到此这篇关于Pandas条件筛选与组合筛选的使用的文章就介绍到这了,更多相关Pandas条件筛选与组合筛选内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜