PyTorch一小时掌握之神经网络分类篇
目录
- 概述
- 导包
- 设置超参数
- 读取数据
- 可视化展示
- 建立模型
- 训练模型
- 完整代码
概述
对于 MNIST 手写数据集的具体介绍, 我们在 TensorFlow 中已经详细描述过, 在这里就不多赘述. 有兴趣的同学可以去看看之前的文章: https://www.jb51.net/article/222183.htm
在上一节的内容里, 我们用 PyTorch 实现了回归任务, 在这一节里, 我们将使用 PyTorch 来解决分类任务.
导包
import torchvision import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt
设置超参数
# 设置超参数 n_epochs = 3 batch_size_train = 64 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 10 random_seed = 1 torch.manual_seed(random_seed)
读取数据
# 数据读取 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_train, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_test, shuffle=True) examples = enumerate(test_loader) batch_idx, (example_data, example_targets) = next(examples) # 调试输出 print(example_targets) print(example_data.shape)
输出结果:
tensor([7, 6, 7, 5, 6, 7, 8, 1, 1, 2, 4, 1, 0, 8, 4, 4, 4, 9, 8, 1, 3, 3, 8, 6, 2, 7, 5, 1, 6, 5, 6, 2, 9, 2, 8, 4, 9, 4, 8, 6, 7, 7, 9, 8, 4, 9, 5, 3, 1, 0, 9, 1, 7, 3, 7, 0, 9, 2, 5, 1, 8, 9, 3, 7, 8, 4, 1, 9, 0, 3, 1, 2, 3, 6, 2, 9, 9, 0, 3, 8, 3, 0, 8, 8, 5, 3, 8, 2, 8, 5, 5, 7, 1, 5, 5, 1, 0, 9, 7, 5, 2, 0, 7, 6, 1, 2, 2, 7, 5, 4, 7, 3, 0, 6, 7, 5, 1, 7, 6, 7, 2, 1, 9, 1, 9, 2, 7, 6, 8, 8, 8, 4, 6, 0, 0, 2, 3, 0, 1, 7, 8, 7, 4, 1, 3, 8, 3, 5, 5, 9, 6, 0, 5, 3, 3, 9, 4, 0, 1, 9, 9, 1, 5, 6, 2, 0, 4, 7, 3, 5, 8, 8, 2, 5, 9, 5, 0, 7, 8, 9, 3, 8, 5, 3, 2, 4, 4, 6, 3, 0, 8, 2, 7, 0, 5, 2, 0, 6, 2, 6, 3, 6, 6, 7, 9, 3, 4, 1, 6, 2, 8, 4, 7, 7, 2, 7, 4, 2, 4, 9, 7, 7, 5, 9, 1, 3, 0, 4, 4, 8, 9, 6, 6, 5, 3, 3, 2, 3, 9, 1, 1, 4, 4, 8, 1, 5, 1, 8, 8, 0, 7, 5, 8, 4, 0, 0, 0, 6, 3, 0, 9, 0, 6, 6, 9, 8, 1, 2, 3, 7, 6, 1, 5, 9, 3, 9, 3, 2, 5, 9, 9, 5, 4, 9, 3, 9, 6, 0, 3, 3, 8, 3, 1, 4, 1, 4, 7, 3, 1, 6, 8, 4, 7, 7, 3, 3, 6, 1, 3, 2, 3, 5, 9, 9, 9, 2, 9, 0, 2, 7, 0, 7, 5, 0, 2, 6, 7, 3, 7, 1, 4, 6, 4, 0, 0, 3, 2, 1, 9, 3, 5, 5, 1, 6, 4, 7, 4, 6, 4, 4, 9, 7, 4, 1, 5, 4, 8, 7, 5, 9, 2, 9, 4, 0, 8, 7, 3, 4, 2, 7, 9, 4, 4, 0, 1, 4, 1, 2, 5, 2, 8, 5, 3, 9, 1, 3, 5, 1, 9, 5, 3, 6, 8, 1, 7, 9, 9, 9, 9, 9, 2, 3, 5, 1, 4, 2, 3, 1, 1, 3, 8, 2, 8, 1, 9, 2, 9, 0, 7, 3, 5, 8, 3, 7, 8, 5, 6, 4, 1, 9, 7, 1, 7, 1, 1, 8, 6, 7, 5, 6, 7, 4, 9, 5, 8, 6, 5, 6, 8, 4, 1, 0, 9, 1, 4, 3, 5, 1, 8, 7, 5, 4, 6, 6, 0, 2, 4, 2, 9, 5, 9, 8, 1, 4, 8, 1, 1, 6, 7, 5, 9, 1, 1, 7, 8, 7, 5, 5, 2, 6, 5, 8, 1, 0, 7, 2, 2, 4, 3, 9, 7, 3, 5, 7, 6, 9, 5, 9, 6, 5, 7, 2, 3, 7, 2, 9, 7, 4, 8, 4, 9, 3, 8, 7, 5, 0, 0, 3, 4, 3, 3, 6, 0, 1, 7, 7, 4, 6, 3, 0, 8, 0, 9, 8, 2, 4, 2, 9, 4, 9, 9, 9, 7, 7, 6, 8, 2, 4, 9, 3, 0, 4, 4, 1, 5, 7, 7, 6, 9, 7, 0, 2, 4, 2, 1, 4, 7, 4, 5, 1, 4, 7, 3, 1, 7, 6, 9, 0, 0, 7, 3, 6, 3, 3, 6, 5, 8, 1, 7, 1, 6, 1, 2, 3, 1, 6, 8, 8, 7, 4, 3, 7, 7, 1, 8, 9, 2, 6, 6, 6, 2, 8, 8, 1, 6, 0, 3, 0, 5, 1, 3, 2, 4, 1, 5, 5, 7, 3, 5, 6, 2, 1, 8, 0, 2, 0, 8, 4, 4, 5, 0, 0, 1, 5, 0, 7, 4, 0, 9, 2, 5, 7, 4, 0, 3, 7, 0, 3, 5, 1, 0, 6, 4, 7, 6, 4, 7, 0, 0, 5, 8, 2, 0, 6, 2, 4, 2, 3, 2, 7, 7, 6, 9, 8, 5, 9, 7, 1, 3, 4, 3, 1, 8, 0, 3, 0, 7, 4, 9, 0, 8, 1, 5, 7, 3, 2, 2, 0, 7, 3, 1, 8, 8, 2, 2, 6, 2, 7, 6, 6, 9, 4, 9, 3, 7, 0, 4, 6, 1, 9, 7, 4, 4, 5, 8, 2, 3, 2, 4, 9, 1, 9, 6, 7, 1, 2, 1, 1, 2, 6, 9, 7, 1, 0, 1, 4, 2, 7, 7, 8, 3, 2, 8, 2, 7, 6, 1, 1, 9, 1, 0, 9, 1, 3, 9, 3, 7, 6, 5, 6, 2, 0, 0, 3, 9, 4, 7, 3, 2, 9, 0, 9, 5, 2, 2, 4, 1, 6, 3, 4, 0, 1, 6, 9, 1, 7, 0, 8, 0, 0, 9, 8, 5, 9, 4, 4, 7, 1, 9, 0, 0, 2, 4, 3, 5, 0, 4, 0, 1, 0, 5, 8, 1, 8, 3, 3, 2, 1, 2, 6, 8, 2, 5, 3, 7, 9, 3, 6, 2, 2, 6, 2, 7, 7, 6, 1, 8, 0, 3, 5, 7, 5, 0, 8, 6, 7, 2, 4, 1, 4, 3, 7, 7, 2, 9, 3, 5, 5, 9, 4, 8, 7, 6, 7, 4, 9, 2, 7, 7, 1, 0, 7, 2, 8, 0, 3, 5, 4, 5, 1, 5, 7, 6, 7, 3, 5, 3, 4, 5, 3, 4, 3, 2, 3, 1, 7, 4, 4, 8, 5, 5, 3, 2, 2, 9, 5, 8, 2, 0, 6, 0, 7, 9, 9, 6, 1, 6, 6, 2, 3, 7, 4, 7, 5, 2, 9, 4, 2, 9, 0, 8, 1, 7, 5, 5, 7, 0, 5, 2, 9, 5, 2, 3, 4, 6, 0, 0, 2, 9, 2, 0, 5, 4, 8, 9, 0, 9, 1, 3, 4, 1, 8, 0, 0, 4, 0, 8, 5, 9, 8]) torch.Size([1000, 1, 28, 28])
可视化展示
# 画图 (前6个) fig = plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) plt.tight_layout() plt.imshow(example_data[i][0], cmap=TFIGViYFXv'gray', interpolation='none') plt.title("Ground Truth: {}".format(examwww.cppcns.comple_targets[i])) plt.xticks([]) plt.yticks([]) plt.show()
输出结果:
建立模型
# 创建model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) network = Net() optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
训练模型
# 训练 train_losses = [] train_counter = [] test_losses = [] test_counter = [i * len(train_loader.dataset) for i in range(n_epochs + 1)] def train(epoch): network.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = network(data) loss = F.nll_loss(outpu编程客栈t, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) train_losses.append(loss.item()) train_counter.append( (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset))) torch.save(network.state_dict(), './model.pth') torch.save(optimizer.state_dict(), './optimizer.pth') def test(): network.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = network(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, n_epochs + 1): train(epoch) test()
输出结果:
Train Epoch: 1 [0/60000 (0%)] Loss: 2.297471 Train Epoch: 1 [6400/60000 (11%)] Loss: 1.934886 Train Epoch: 1 [12800/60000 (21%)] Loss: 1.242982 Train Epoch: 1 [19200/60000 (32%)] Loss: 0.979296 Train Epoch: 1 [25600/60000 (43%)] Loss: 1.277279 Train Epoch: 1 [32000/60000 (53%)] Loss: 0.721533 Train Epoch: 1 [38400/60000 (64%)] Loss: 0.759595 Train Epoch: 1 [44800/60000 (75%)] Loss: 0.469635 Train Epoch: 1 [51200/60000 (85%)] Loss: 0.422614 Train Epoch: 1 [57600/60000 (96%)] Loss: 0.417603Test set: Avg. loss: 0.1988, Accuracy: 9431/10000 (94%)
Train Epoch: 2 [0/60000 (0%)] Loss: 0.277207
Train Epoch: 2 [6400/60000 (11%)] Loss: 0.328862 Train Epoch: 2 [12800/60000 (21%)] Loss: 0.396312 Train Epoch: 2 [19200/60000 (32%)] Loss: 0.301772 Train Epoch: 2 [25600/60000 (43%)] Loss: 0.253600 Train Epoch: 2 [32000/60000 (53%)] Loss: 0.217821 Train Epoch: 2 [38400/60000 (64%)] Loss: 0.395815 Train Epoch: 2 [44800/60000 (75%)] Loss: 0.265737 Train Epoch: 2 [51200/60000 (85%)] Loss: 0.323627 Train Epoch: 2 [57600/60000 (96%)] Loss: 0.236692Test set: Avg. loss: 0.1233, Accuracy: 9622/10000 (96%)
Train Epoch: 3 [0/60000 (0%)] Loss: 0.500148
Train Epoch: 3 [6400/60000 (11%)] Loss: 0.338118 Train Epoch: 3 [12800/60000 (21%)] Loss: 0.452308 Train Epoch: 3 [19200/60000 (32%)] Loss: 0.374940 Train Epoch: 3 [25600/60000 (43%)] Loss: 0.323300 Train Epoch: 3 [32000/60000 (53%)] Loss: 0.203830 Train Epoch: 3 [38400/60000 (64%)] Loss: 0.379557 Train Epoch: 3 [44800/60000 (75%)] Loss: 0.334822 Train Epoch: 3 [51200/60000 (85%)] Loss: 0.361676 Train Epoch: 3 [57600编程客栈/60000 (96%)] Loss: 0.218833Test set: Avg. loss: 0.0911, Accuracy: 9723/10000 (97%)
完整代码
import torchvision import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import matplotlib.pyplot as plt # 设置超参数 n_epochs = 3 batch_size_train = 64 batch_size_test = 1000 learning_rate = 0.01 momentum = 0.5 log_interval = 100 random_seed = 1 torch.manual_seed(random_seed) # 数据读取 train_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data/', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_train, shuffle=True) test_loader = torch.utils.data.DataLoader( torchvision.datasets.MNIST('./data/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( (0.1307,), (0.3081,)) ])), batch_size=batch_size_test, shuffle=True) examples = enumerate(test_loader) batch_idx, (example_data, example_targets) = next(examples) # 调试输出 print(example_targets) print(example_data.shape) # 画图 (前6个) fig = plt.figure() for i in range(6): plt.subplot(2, 3, i + 1) plt.tight_layout() plt.imshow(example_data[i][0], cmap='gray', interpolation='none') plt.title("Ground Truth: {}".format(example_targets[i])) plt.xticks([]) plt.yticks([]) plt.show() # 创建model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x) network = Net() optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum) # 训练 train_losses = [] train_counter = [] test_losses = [] test_counter = [i * lenTFIGViYFXv(train_loader.dataset) for i in range(n_epochs + 1)] def train(epoch): network.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = network(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) train_losses.append(loss.item()) train_counter.append( (batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset))) torch.save(network.state_dict(), './model.pth') torch.save(optimizer.state_dict(), './optimizer.pth') def test(): network.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = network(data) test_loss += F.nll_loss(output, target, size_average=False).item() pred = output.data.max(1, keepdim=True)[1] correct += pred.eq(target.data.view_as(pred)).sum() test_loss /= len(test_loader.dataset) test_losses.append(test_loss) print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) for epoch in range(1, n_epochs + 1): train(epoch) test()
到此这篇关于PyTorch一小时掌握之神经网络分类篇的文章就介绍到这了,更多相关PyTorch神经网络分类内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论