开发者

Python PaddleNLP实现自动生成虎年藏头诗

目录
  • 一、 数据处理
    • 1.paddlenlp升级
    • 2.提取诗头
    • 3.生成词表
    • 4.定义dataset
  • 二、定义模型并训练
    • 1.模型定义
    • 2.模型训练
    • 3.模型保存
  • 三、生成藏头诗
    • 总结

      一、 数据处理

      本项目中利用古诗数据集作为训练集,编码器接收古诗的每个字的开头,解码器利用编码器的信息生成所有的诗句。为了诗句之间的连贯性,编码器同时也在诗头之前加上之前诗句的信息。举例:

      “白日依山尽,黄河入海流,欲穷千里目,更上一层楼。” 可以生成两个样本:

      样本一:编码器输入,“白”;解码器输入,“白日依山尽,黄河入海流”

      样本二:编码器输入,“白日依山尽,黄河入海流。欲”;解码器输入,“欲穷千里目,更上一层楼。”

      1.paddlenlp升级

      !pip install -U paddlenlp
      Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
      Collecting paddlenlp
      [?25l  Downloading https://pypi.tuna.tsinghua.edu.cn/packages/17/9b/4535ccf0e96c302a3066bd2e4d0f44b6b1a73487c6793024475b48466c32/paddlenlp-2.2.3-py3-none-any.whl (1.2MB)
           |████████████████████████████████| 1.2MB 11.2MB/s eta 0:00:01
      [?25hRequirement already satisfied, skipping upgrade: h5py in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (2.9.0)
      Requirement already satisfied, skipping upgrade: colorlog in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (4.1.0)
      Requirement already satisfied, skipping upgrade: colorama in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.4.4)
      Requirement already satisfied, skipping upgrade: seqeval in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (1.2.2)
      Requirement already satisfied, skipping upgrade: jieba in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.42.1)
      Requirement already satisfied, skipping upgrade: multiprocess in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from paddlenlp) (0.70.11.1)
      Requirement already satisfied, skipping upgrade: six in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from h5py->paddlenlp) (1.16.0)
      Requirement already satisfied, skipping upgrade: numpy>=1.7 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from h5py->paddlenlp) (1.20.3)
      Requirement already satisfied, skipping upgrade: scikit-learn>=0.21.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from seqeval->paddlenlp) (0.24.2)
      Requirement already satisfied, skipping upgrade: dill>=0.3.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from multiprocess->paddlenlp) (0.3.3)
      Requirement already satisfied, skipping upgrade: scipy>=0.19.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (1.6.3)
      Requirement already satisfied, skipping upgrade: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (2.1.0)
      Requirement alreadhttp://www.cppcns.comy satisfied, skipping upgrade: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn>=0.21.3->seqeval->paddlenlp) (0.14.1)
      Installing collected packages: paddlenlp
        Found existing installation: paddlenlp 2.1.1
          Uninstalling paddlenlp-2.1.1:
            Successfully uninstalled paddlenlp-2.1.1
      Successfully installed paddlenlp-2.2.3

      2.提取诗头

      import re
      poems_file = open("./data/data70759/poems_zh.txt", encoding="utf8")
      # 对读取的每一行诗句,统计每一句的词头
      poems_samples = []
      poems_prefix = []
      poems_heads = []
      for line in poems_file.readlines():
          line_ = re.sub('。', ' ', line)
          line_ = line_.split()
          # 生成训练样本
          for i, p in enumerate(line_):
              poems_heads.append(p[0])
              poems_prefix.append('。'.join(line_[:i]))
              poems_samples.append(p + '。')
      
      
      # 输出文件信息
      for i in range(20):
          print("poems heads:{}, poems_prefix: {}, poems:{}".format(poems_heads[i], poems_prefix[i], poems_samples[i]))
      poems heads:欲, poems_prefix: , poems:欲出未出光辣达,千山万山如火发。
      poems heads:须, poems_prefix: 欲出未出光辣达,千山万山如火发, poems:须臾走向天上来,逐却残星赶却月。
      poems heads:未, poems_prefix: , poems:未离海底千山黑,才到天中万国明。
      poems heads:满, poems_prefix: , poems:满目江山四望幽,白云高卷嶂烟收。
      poems heads:日, poems_prefix: 满目江山四望幽,白云高卷嶂烟收, poems:日回禽影穿疏木,风递猿声入小楼。
      poems heads:远, poems_prefix: 满目江山四望幽,白云高卷嶂烟收。日回禽影穿疏木,风递猿声入小楼, poems:远岫似屏横碧落,断帆如叶截中流。
      poems heads:片, poems_prefix: , poems:片片飞来静又闲,楼头江上复山前。
      poems heads:飘, poems_prefix: 片片飞来静又闲,楼头江上复山前, poems:飘零尽日不归去,帖破清光万里天。
      poems heads:因, poems_prefix: , poems:因登巨石知来处,勃勃元生绿藓痕。
      poems heads:静, poems_prefix: 因登巨石知来处,勃勃元生绿藓痕, poems:静即等闲藏草木,动时顷刻徧乾坤。
      poems heads:横, poems_prefix: 因登巨石知来处,勃勃元生绿藓痕。静即等闲藏草木,动时顷刻徧乾坤, poems:横天未必朋元恶,捧日还曾瑞至尊。
      poems heads:不, poems_prefix: 因登巨石知来处,勃勃元生绿藓痕。静即等闲藏草木,动时顷刻徧乾坤。横天未必朋元恶,捧日还曾瑞至尊, poems:不独朝朝在巫峡,楚王何事谩劳魂。
      poems heads:若, poems_prefix: , poems:若教作镇居中国,争得泥金在泰山。
      poems heads:才, poems_prefix: , poems:才闻暖律先偷眼,既待和风始展眉。
      poems heads:嚼, poems_prefix: , poems:嚼处春冰敲齿冷,咽时雪液沃心寒。
      poems heads:蒙, poems_prefix: , poems:蒙君知重惠琼实,薄起金刀钉玉深。
      poems heads:深, poems_prefix: , poems:深妆玉瓦平无垅,乱拂芦花细有声。
      poems heads:片, poems_prefix: , poems:片逐银蟾落醉觥。
      poems heads:巧, poems_prefix: , poems:巧剪银花乱,轻飞玉叶狂。
      poems heads:寒, poems_prefix: , poems:寒艳芳姿色尽明。

      3.生成词表

      # 用PaddleNLP生成词表文件,由于诗文的句式较短,我们以单个字作为词单元生成词表
      from paddlenlp.data import Vocab
      
      vocab = Vocab.build_vocab(poems_samples, unk_token="<unk>", pad_token="<pad>", bos_token="<", eos_token=bsjggl">")
      vocab_size = len(vocbsjgglab)
      
      print("vocab size", vocab_size)
      print("word to idx:", vocab.token_to_idx)

      4.定义dataset

      # 定义数据读取器
      from paddle.io import Dataset, BatchSampler, DataLoader
      import numpy as np
      
      class PoemDataset(Dataset):
          def __init__(self, poems_data, poems_heads, poems_prefix, vocab, encoder_max_len=128, decoder_max_len=32):
              super(PoemDataset, self).__init__()
              self.poems_data = poems_data
              self.poems_heads = poems_heads
              self.poems_prefix = poems_prefix
              self.vocab = vocab
              self.tokenizer = lambda x: [vocab.token_to_idx[x_] for x_ in x]
              self.encoder_max_len = encoder_max_len
              self.decoder_max_len = decoder_max_len
      
          def __getitem__(self, idx):
              eos_id = vocab.token_to_idx[vocab.eos_token]
              bos_id = vocab.token_to_idx[vocab.bos_token]
              pad_id = vocab.token_to_idx[vocab.pad_token]
              # 确保encoder和decoder的输出都小于最大长度
              poet = self.poems_data[idx][:self.decoder_max_len - 2]  # -2 包含bos_id和eos_id
              prefix = self.poems_prefix[idx][- (self.encoder_max_len - 3):]  # -3 包含bos_id, eos_id, 和head的编码
              # 对输入输出编码
      
              sample = [bos_id] + self.tokenizer(poet) + [eos_id]
              prefix = self.tokenizer(prefix) if prefix else []
              heads = prefix + [bos_id] + self.tokenizer(self.poems_heads[idx]) + [eos_id] 
              sample_len = len(sample)
              heads_len = len(heads)
              sample = sample + [pad_id] * (self.decoder_max_len - sample_len)
              heads = heads + [pad_id] * (self.encoder_max_len - heads_len)
              mask = [1] * (sample_len - 1) + [0] * (self.decoder_max_len - sample_len) # -1 to make equal to out[2]
              out = [np.array(d, "int64") for d in [heads, heads_len, sample, sample, mask]]
              out[2] = out[2][:-1]
              out[3] = out[3][1:, np.newaxis]
              return out
      
          def shape(self):
              return [([None, self.encoder_max_len], 'int64', 'src'),
                      ([None, 1], 'int64', 'src_length'),
                      ([None, self.decoder_max_len - 1],'int64', 'trg')], \
                     [([None, self.decoder_max_len - 1, 1], 'int64', 'label'),
                      ([None, self.decoder_max_len - 1], 'int64', 'trg_mask')]
      
      
          def __len__(self):
              return len(self.poems_data)
      
      dataset = PoemDataset(poems_samples, poems_heads, poems_prefix, vocab)
      batch_sampler = BatchSampler(dataset, batch_size=2048)
      data_loader = DataLoader(dataset, batch_sampler=batch_sampler)

      二、定义模型并训练

      1.模型定义

      from Seq2Seq.models import Seq2SeqModel
      from paddlenlp.metrics import Perplexity
      from Seq2Seq.loss import CrossEntropyCriterion
      import paddle
      from paddle.static import InputSpec
      
      # 参数
      lr = 1e-6
      max_epoch = 20
      models_save_path = "./checkpoints"
      
      encoder_attrs = {"vocab_size": vocab_size, "embed_dim": 200, "hidden_size": 128, "num_layers": 4, "dropout": .2,
                          "direction": "bidirectional", "mode": "GRU"}
      decoder_attrs = {"vocab_size": vocab_size, "embed_dim": 200, "hidden_size": 128, "num_layers": 4, "direction": "forward",
                          "dropout": .2, "mode": "GRU", "use_attention": True}
      
      # inputs shape and label shape
      inputs_shape, labels_shape = dataset.shape()
      inputs_list = [InputSpec(input_shape[0], input_shape[1], input_shape[2]) for input_shape in inputs_shape]
      labels_list = [InputSpec(label_shape[0], label_shape[1], label_shape[2]) for label_shape in labels_shape]
      
      net = Seq2SeqModel(encoder_attrs, decoder_attrs)
      model = paddle.Model(net, inputs_list, labels_list)
      
      model.load("./final_models/model")
      
      opt = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters())
      
      model.prepare(opt, CrossEntropyCriterion(), Perplexity())
      W0122 21:03:30.616776   166 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
      W0122 21:03:30.620450   166 device_context.cc:465] device: 0, cuDNN Version: 7.6.

      2.模型训练

      # 训练,训练时间较长,已提供了训练好的模型(./final_models/model)
      model.fit(train_data=data_loader, epochs=max_epoch, eval_freq=1, save_freq=5, save_dir=models_save_path, shuffle=True)

      3.模型保存

      # 保存
      model.save("./final_models/model")

      三、生成藏头诗

      import warnings
      
      def post_process_seq(seq, bos_idx, eos_idx, output_bos=False, output_eos=False):
          """
          Post-process the decoded sequence.
          """
          eos_pos = len(seq) - 1
          for i, idx in enumerate(seq):
              if idx == eos_idx:
                  eos_pos = i
                  break
          seq = [idx for idx in seq[:eos_pos + 1]
                 if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)]
          return seq
      
      # 定义用于生成祝福语的类
      from paddlenlp.data.tokenizer import JiebaTokenizer
      
      class GenPoems():
          # content (str): the str to generate poems, like "恭喜发财"
          # vocab: the instance of paddlenlp.data.vocab.Vocab
          # model: the Inference Model
          def __init__(self, vocab, model):
              self.bos_id = vocab.token_to_idx[vocab.bos_token]
              self.eos_id = vocab.token_to_idx[vocab.eos_token]
              self.pad_id = vocab.token_to_idx[vocab.pad_token]
              self.tokenizer = lambda x: [vocab.token_to_idx[x_] for x_ in x]
              self.model = model
              self.vocab = vocab
      
          def gen(self, content, max_len=128):
              # max_len is the encoder_max_len in Seq2Seq Model.
              out = []
              vocab_list = list(vocab.token_to_idx.keys())
              for w in content:
                  if w in vocab_list:
                      content = re.sub("([。,])", '', content)
                      heads = out[- (max_len - 3):] + [self.bos_id] + self.tokenizer(w) + [self.eos_id]
                      len_heads = len(heads)
                      heads = heads + [self.pad_id] * (max_len - len_heads)
                      x = paddle.to_tensor([heads], dtype="int64")
                      len_x = paddle.to_tensor([len_heads], dtype='int64')
                      pred = self.model.predict_batc编程客栈h(inputs = [x, len_x])[0]
                      out += self._get_results(pred)[0]
                  else:
                      warnings.warn("{} is not in vocab list, so it is skipped.".format(w))
                      pass
              out = ''.join([self.vocab.idx_to_token[id] for id in out])
              return out
          
          def _get_results(self, pred):
              pred = pred[:, :, np.newaxis] if len(pred.shape) == 2 else pred
              pred = np.transpose(pred, [0, 2, 1])
              outs = []
              for beam in pred[0]:
                  id_list = post_process_seq(beam, self.bos_id, self.eos_id)
                  outs.append(id_list)
              return outs
      # 载入预测模型
      from Seq2Seq.models import Seq2SeqInferModel
      import paddle
      
      encoder_attrs = {"vocab_size": vocab_size, "embed_dim": 200, "hidden_size": 128, "num_layers": 4, "dropout": .2,
                          "direction": "bidirectional", "mode": "GRU"}
      decoder_attrs = {"vocab_size": vocab_size, "embed_dim": 200, "hidden_size": 128, "num_layers": 4, "direction": "forward",
                          "dropout": .2, "mode": "GRU", "use_attention": True}
      
      infer_model = paddle.Model(Seq2SeqInferModel(encoder_attrs,
                                                   decoder_attrs,
                         bsjggl                          bos_id=vocab.token_to_idx[vocab.bos_token],
                                                   eos_id=vocab.token_to_idx[vocab.eos_token],
                                                   beam_size=10,
                                                   max_out_len=256))
      infer_model.load("./final_models/model")
      # 送新年祝福
      # 当然,表白也可以
      generator = GenPoems(vocab, infer_model)
      
      content = "生龙活虎"
      poet = generator.gen(content)
      for line in poet.strip().split('。'):
          try:
              print("{}\t{}。".format(line[0], line))
          except:
              pass

      输出结果

      生    生涯不可见,何处不相逢。

      龙    龙虎不知何处,人间不见人间。

      活    活人不是人间事,不觉人间不可识。

      虎    虎豹相逢不可寻,不知何处不相识。

      总结

      这个项目介绍了如何训练一个生成藏头诗的模型,从结果可以看出,模型已经具有一定的生成诗句的能力。但是,限于训练集规模和训练时间,生成的诗句还有很大的改进空间,未来还将进一步优化这个模型,敬请期待。

      以上就是Python PaddleNLP实现自动生成虎年藏头诗的详细内容,更多关于PaddleNLP生成藏头诗的资料请关注我们其它相关文章!

      0

      上一篇:

      下一篇:

      精彩评论

      暂无评论...
      验证码 换一张
      取 消

      最新开发

      开发排行榜