pytorch使用voc分割数据集训练FCN流程讲解
目录
- 一、FCN理论介绍
- 二、训练过程
- 2.1 voc数据集介绍
- 2.2 网络定义
- 2.3 训练
语义分割是对图像中的每一个像素进行分类,从而完成图像分割的过程。分割主要用于医学图像领域和无人驾驶领域。
和其他算法一样,图像分割发展过程也经历了传统算法到深度学习算法的转变,传统的分割算法包括阈值分割、分水岭、边缘检测等等,面临的问题也跟其他传统图像处理算法一样,就是鲁棒性不够,但在一些场景单一不变的场合,传统图像处理依旧用的较多。
FCN是2014年的一篇论文,深度学习语义分割的开山之作,从思想上奠定了语义分割的基础。
Fully Convolutional Networks for Semantic Segmentation
Submitted on 14 Nov 2014
https://arxiv.org/abs/1411.4038
一、FCN理论介绍
上图是原论文中的截图,从整体架构上描绘了FCN的网络架构。其实就是图像经过一系列卷积运算,然后再上采样成原图大小,输出每一个像素的类别概率。
上图更加细致的描述了FCN的网络。backbone采用VGG16,把VGG的fully-connect层用卷积来表示,即conv6-7(一个大小和feature_map同样size的卷积核,就相当于全连接)。总的来说,网络有下列几个关键点:
1. Fully Convolution: 用于解决像素的预测问题。通过将基础网络(如VGG16)最后全连接层替换为卷积层,可实现任意大小的图像输入,并且输出图像大小与输入相对应;
2.Transpose Convolution: 上采样过程,用于恢复图片尺寸,方便后续进行逐个像素的预测;
3. Skip Architecture : 用于融合高底层特征信息。因为卷积是个下采样操作,而转置卷积虽然恢复了图像尺寸,但毕竟不是卷积的逆操作,所以信息肯定有丢失,而skip architecture可以融合千层的细粒度信息和深层的粗粒度信息,提高分割的精细程度。
FCN-32s: 没有跳连接,按照每层转置卷积放大2倍的速度放大,经过五层后放大32倍复原原图大小。
FCN-16s: 一个skip-connect,(1/32)放大为(1/16)后,再与vgg的(1/16)相加,然后继续放大,直到原图大小。
FCN-8s: 两个skip-connect,一个是(1/32)放大为(1/16)后,再与vgg的(1/16)相加;另外一个是(1/16)放大为(1/8)之后,再与vgg的(1/8)相加,然后继续放大,直到原图大小。
二、训练过程
pytorch训练深度学习模型主要实现三个文件即可,分别为data.py, model.py, train.py。其中data.py里实现数据批量处理功能,model.py定义网络模型,train.py实现训练步骤。
2.1 voc数据集介绍
下载地址:Pascal VOC Dataset Mirror
图片的名称在/ImageSets/Segmentation/train.txt ans val.txt里
图片都在./data/VOC2012/JPEGImages文件夹下面,需要在train.txt读取的每一行后面加上.jpg
标签都在./data/VOC2012/SegmentationClass文件夹下面,需要在读取的每一行后面加上.png
voc_seg_data.py
import torch import torch.nn as nn import torchvision.transforms as T from torch.utils.data import DataLoader,Dataset import numpy as np import os from PIL import Image from datetime import datetime class VOC_SEG(Dataset): def __init__(self, root, width, height, train=True, transforms=None): # 图像统一剪切尺寸(width, height) self.width = width self.height = height # VOC数据集中对应的标签 self.classes = ['background','aeroplane','bicycle','bird','boat', 'bottle','bus','car','cat','chair','cow','diningtable', 'dog','horse','motorbike','person','potted plant', 'sheep','sofa','train','tv/monitor'] # 各种标签所对应的颜色 self.colormap = [[0,0,0],[128,0,0],[0,128,0], [128,128,0], [0,0,128], [128,0,128],[0,128,128],[128,128,128],[64,0,0],[192,0,0], [64,128,0],[192,128,0],[64,0,128],[192,0,128], [64,128,128],[192,128,128],[0,64,0],[128,64,0], [0,192,0],[128,192,0],[0,64,128]] # 辅助变量 self.fnum = 0 if transforms is None: normalize = T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) self.transforms = T.Compose([ T.ToTensor(), normalize ]) # 像素值(RGB)与类别label(0,1,3...)一一对应 self.cm2lbl = np.zeros(256**3) for i, cm in enumerate(self.colormap): self.cm2lbl[(cm[0]*256+cm[1])*256+cm[2]] = i if train: txt_fname = root+"/ImageSets/Segmentation/train.txt" else: txt_fname = root+"/ImageSets/Segmentation/val.txt" with open(txt_fname, 'r') as f: images = f.read().split() imgs = [os.path.join(root, "JPEGImages", item+".jpg") for item in images] labels = [os.path.join(root, "SegmentationClass", item+".png") for item in images] self.imgs = self._filter(imgs) self.labels = self._filter(labels) if train: print("训练集:加载了 " + str(len(self.imgs)) + " 张图片和标签" + ",过滤了" + str(self.fnum) + "张图片") else: print("测试集:加载了 " + str(len(self.imgs)) + " 张图片和标签" + ",过滤了" + str(self.fnum) + "张图片") def _crop(self, data, label): """ 切割函数,默认都是从图片的左上角开始切割。切割后的图片宽是width,高是height data和label都是Image对象 """ box = (0,0,self.width,self.height) data = data.crop(box) label = label.crop(box) return data, label def _image2label(self, im): data = np.array(im, dtype="int32") idx = (data[:,:,0]*256+data[:,:,1])*256+data[:,:,2] python return np.array(self.cm2lbl[idx], dtype="int64") def _image_transforms(self, data, label): data, label = self._crop(data,label) data = self.transforms(data) label = self._image2label(label) label = torch.from_numpy(label) return data, label def _filter(self, imgs): img = [] for im in imgs: if (Image.open(im).size[1] >= self.height and Image.open(im).size[0] >= self.width): img.append(im) else: self.fnum = self.fnum+1 return img def __getitem__(self, index: int): img_path = self.imgs[index] label_path = self.labels[index] img = Image.open(img_path) label = Image.open(label_path).convert("RGB") img, label = self._image_transforms(img, label) return img, label def __len__(self) : return len(self.imgs) if __name__=="__main__": root = "./VOCdevkit/VOC2012" height = 224 width = 224 voc_train = VOC_SEG(root, width, height, train=True) voc_test = VOC_SEG(root, width, height, train=False) # train_data = DataLoader(voc_train, BATch_size=8, shuffle=True) # valid_data = DataLoader(voc_test, batch_size=8) for data, label in voc_train: print(data.shape) print(label.shape) break
- 我这里为了省事把一些辅助函数,如_crop(), _filter(),还是有变量colormap等都写到类里面了。实际上脱离出来另外写一个数据预处理的文件比较好,这样在训练结束后,推理测试时可以直接调用相应的处理函数。
- 数据处理的结果是得到data, label。data是tensor格式的图像,label也是tensor,且已经把像素(RGB)替换为了int类别号。这样在训练时候,交叉熵函数直接会实现one-hot处理,就跟训练分类网络一样。
2.2 网络定义
fcn8s_net.py
import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from torchsummary import summary from torchvision import models class FCN8s(nn.Module): def __init__(self, num_classes=21): super(FCN8s,self).__init__() net = models.vgg16(pretrained=True) # 从预训练模型加载VGG16网络参数 self.premodel = net.features # 只使用Vgg16的五层卷积层(特征提取层)(3,224,224)----->(512,7,7) # self.conv6 = nn.Conv2d(512,512,kernel_size=1,stride=1,padding=0,dilation=1) # self.conv7 = nn.Conv2d(512,512,kernel_size=1,stride=1,padding=0,dilation=1) # (512,7,7) self.relu = nn.ReLU(inplace=True) self.deconv1 = nn.ConvTranspose2d(512,512,kernel_size=3,stride=2,padding=1,dilation=1,output_padding=1) # x2 self.bn1 = nn.BatchNorm2d(512) # (512, 14, 14) self.deconv2 = nn.ConvTranspose2d(512,256,kernel_size=3,stride=2,padding=1,dilation=1,output_padding=1) # x2 self.bn2 = nn.BatchNorm2d(256) # (256, 28, 28) self.deconv3 = nn.ConvTranspose2d(256,128,kernel_size=3,stride=2,padding=1,dilation=1,output_padding=1) # x2 self.bn3 = nn.BatchNorm2d(128) # (128, 56, 56) self.deconv4 = nn.ConvTranspose2d(128,64,kernel_size=3,stride=2,padding=1,dilation=1,output_padding=1) # x2 self.bn4 = nn.BatchNorm2d(64) # (64, 112, 112) self.deconv5 = nn.ConvTranspose2d(64,32,kernel_size=3,stride=2,padding=1,dilation=1,output_padding=1) # x2 self.bn5 = nn.BatchNorm2d(32) # (32, 224, 224) self.classifier = nn.Conv2d(32, num_classes, kernel_size=1) # (num_classes, 224, 224) def forward(self, input): x = input for i in range(len(self.premodel)): x = self.premodel[i](x) if i == 16: x3 = x # maxpooling3的feature map (1/8) if i == 23: x4 = x # maxpooling4的feature map (1/16) if i == 30: x5 = x # maxpooling5的feature map (1/32) # 五层转置卷积,每层size放大2倍,与VGG16刚好相反。两个androidskip-connect score = self.relu(self.deconv1(x5)) # out_size = 2*in_size (1/16) score = self.bn1(score + x4) score = self.relu(self.deconv2(score)) # out_size = 2*in_size (1/8) score = self.bn2(score + x3) score = self.bn3(self.relu(self.deconv3(score))) # out_size = 2*in_size (1/4) score = self.bn4(self.relu(self.deconv4(score))) # out_size = 2*in_size (1/2) score = self.bn5(self.relu(self.deconv5(score))) # out_size = 2*in_size (1) score = self.classifier(score) # size不变,使输出的channel等于类别数 return score if __name__ == "__main__": model = FCN8s() device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) print(model)
FCN的网络代码实现上,在网上查的都有所差异,不过总体都是卷积+转置卷积+跳链接的结构。实际上只要实现特征提取(提取抽象特征)——转置卷积(恢复原图大小)——给每一个像素分类的过程就够了。
本次实验采用vgg16的五层卷积层作为特征提取网络,然后接五个转置卷积(2x)恢复到原图大小,然后再接一个卷积层把feature map的通道调整为类别个数(21)。最后再softmax分类就行了。
2.3 训练
train.py
import torch import torch.nn as nn from torch.utils.data import DataLoader,Dataset from voc_seg_data import VOC_SEG from fcn_net import FCN8s import os import numpy as np # 计算混淆矩阵 def _fast_hist(label_true, label_pred, n_class): mask = (label_true >= 0) & (pythonlabel_true < n_class) hist = np.bincount( n_class * label_true[mask].astype(int) + label_pred[mask], minlength=n_class ** 2).reshape(n_class, n_class) return hist # 根据混淆矩阵计算Acc和mIou def label_accuracy_score(label_trues, label_preds, n_class): """Returns accuracy score evaLuation result. - overall accuracy - mean accuracy - mean IU """ hist = np.zeros((n_class, n_class)) for lt, lp in zip(label_trues, label_preds): hist += _fast_hist(lt.flatten(), lp.flatten(), n_class) acc = np.diag(hist).sum() / hist.sum() with np.errstate(divide='ignore', invalid='ignore'): acc_cls = np.diag(hist) / hist.sum(axis=1) acc_cls = np.nanmean(acc_cls) with np.errstate(divide='ignore', invalid='ignore'): iu = np.diag(hist) / ( hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist) ) mean_iu = np.nanmean(iu) freq = hist.sum(axis=1) / hist.sum() return acc, acc_cls, mean_iu def main(): # 1. load dataset root = "./VOCdevkit/VOC2012" batch_size = 32 height = 224 width = 224 voc_train = VOC_SEG(root, width, height, train=True) voc_test = VOC_SEG(root, width, height, train=False) train_dataloader = DataLoader(voc_train,batch_size=batch_size,shuffle=True) val_dataloader = DataLoader(voc_test,batch_size=batch_size,shuffle=True) # 2. load model num_class = 21 model = FCN8s(num_classes=num_class) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model = model.to(device) # 3. prepare super parameters criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.7) epoch = 50 # 4. train val_acc_list = [] out_dir = "./checkpoints/" if not os.path.exists(out_dir): os.makedirs(out_dir) for epoch in range(0, epoch): print('\nEpoch: %d' % (epoch + 1)) model.train() sum_loss = 0.0 for batch_idx, (images, labels) in enumerate(train_dataloader): length = len(train_dataloader) images, labels = images.to(device), labels.to(device) optimizer.zero_grad() outputs = model(images) # torch.size([batch_size, num_class, width, height]) loss = criterion(outputs, labels) loss.backward() optimizer.step() sum_loss += loss.item() predicted = torch.argmax(outputs.data, 1) label_pred = predicted.data.cpu().numpy() label_true = labels.data.cpu().numpy() acc, acc_cls, mean_iu = label_accuracy_score(label_true,label_pred,num_class) print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% | Acc_cls: %.03f%% |Mean_iu: %.3f' % (epoch + 1, (batch_idx + 1 + epoch * length), sum_loss / (batch_idx + 1), 100. *acc, 100.*acc_cls, mean_iu)) #get the ac with testdataset in each epoch print('Waiting Val...') mean_iu_epoch = 0.0 mean_acc = 0.0 mean_acc_cls = 0.0 with torch.no_grad(): for batch_idx, (images, labels) in enumerate(val_dataloader): model.eval() images, labels = images.to(devicpythone), labels.t开发者_Python开发o(device) outputs = model(images) predicted = torch.argmax(outputs.data, 1) label_pred = predicted.data.cpu().numpy() label_true = labels.data.cpu().numpy() acc, acc_cls, mean_iu = label_accuracy_score(label_true,label_pred,num_class) # total += labels.size(0) # iou = torch.sum((predicted == labels.data), (1,2)) / float(width*height) # iou = torch.sum(iou) # correct += iou mean_iu_epoch += mean_iu mean_acc += acc mean_acc_cls += acc_cls print('Acc_epoch: %.3f%% | Acc_cls_epoch: %.03f%% |Mean_iu_epoch: %.3f' % ((100. *mean_acc / len(val_dataloader)), (100.*mean_acc_cls/len(val_dataloader)), mean_iu_epoch/len(val_dataloader)) ) val_acc_list.append(mean_iu_epoch/len(val_dataloader)) torch.save(model.state_dict(), out_dir+"last.pt") if mean_iu_epoch/len(val_dataloader) == max(val_acc_list): torch.save(model.state_dict(), out_dir+"best.pt") print("save epoch {} model".forjsmat(epoch)) if __name__ == "__main__": main()
整体训练流程没问题,读者可以根据需要更改其模型评价标准和相关代码。在本次训练中,主要使用Acc作为评价指标,其实就是分类正确的像素个数除以全部像素个数。最终训练结果如下:
0.8
训练集的Acc来到了0.8, 验证集的Acc来到了0.77。由于有一些函数是复制过来的,如_hist等,所以其他指标暂时不参考。
到此这篇关于pytorch使用voc分割数据集训练FCN流程讲解的文章就介绍到这了,更多相关pytorch训练FCN内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论