Python3.10 Generator生成器Coroutine原生协程详解
目录
- 引言
- 协程底层实现
- 业务场景
- 结语
引言
普遍意义上讲,生成器是一种特殊的迭代器,它可以在执行过程中暂停并在恢复执行时保留它的状态。而协程,则可以让一个函数在执行过程中暂停并在恢复执行时保留它的状态,在python3.10中,原生协程的实现手段,就是生成器,或者说的更具体一些:协程就是一种特殊的生成器,而生成器,就是协程的入门心法。
协程底层实现
我们知道,Python3.10中可以使用async和await关键字来实现原生协程函数的定义和调度,但其实,我们也可以利用生成器达到协程的效果,生成器函数和普通函数的区别在于,生成器函数使用 yield 语句来暂停执行并返回结果。例如,下面是一个使用生成器函数实现的简单协程:
def my_coroutine(): while True: x = yield print(x) # 使用生成器函数创建协程 coroutine = my_coroutine() # 启动协程python next(coroutine) # 在协程中传入数据 coroutine.send(1) coroutine.send(2) coroutine.send(3)
程序返回:
➜ mydemo git:(mwww.devze.comaster) ✗ /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/mydemo/src/test.py"
1 2 3
在上面的代码中,生成器函数 my_coroutine 使用了一个无限循环来实现协程的逻辑。每当调用 send 方法时,协程就会从 yield 语句处恢复执行,并将传入的参数赋值给变量 x。
如此,就完成了协程执行-》阻塞-》切换-》回调的工作流模式。
当然,作为事件循环机制,协程服务启动可能无限期地运行,要关闭协程服务,可以使用生成器的close()方法。当一个协程被关闭时,它会生成GeneratorExit异常,该异常可以用生成器的方式进行捕获:
def my_coroutine(): try : while True: x = yield print(x) except GeneratorExit: print("协程关闭") # 使用生成器函数创建协程 coroutine = my_coroutine() # 启动协程 next(coroutine) # 在协程中传入数据 coroutine.send(1) coroutine.send(2) coroutine.send(3) coroutine.close()
程序返回:
➜ mydemo git:(master) ✗ /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/mydemo/src/test.py"
1 2 3 协程关闭
业务场景
在实际业务场景中,我们也可以使用生成器来模拟协程流程,主要体现在数据的IO流操作中,假设我们需要从本地往服务器传输数据,首先建立链接对象:
class Cwww.devze.comonnection: def __init__(self, addr): self.addr = addr def transmit(self, daphpta): print(f"X: {data[0]}, Y: {data[1]} sent to {self.addr}")
随后建立生成器函数:
def send_to_server(conn): while True: try: raw_data = yield raw_data = raw_data.split(' ') coords = (float(raw_data[0]), float(raw_data[1])) conn.transmit(coords) except ConnectionError: print("链接丢失,进行回调") conn = Connection("重新连接v3u.cn")
利用生成器调用链接类的transmit方法进行数据的模拟传输,如果链接断开,则会触发回调重新连接,执行逻辑:
if __name__ == '__main__': conn = Connection("v3u.cn") sender = send_to_server(conn) sender.send(None) for i in range(1, 6): sender.send(f"{100/i} {200/i}") # 模拟链接断开 conn.addr = None sender.throw(ConnectionError) for i in range(1, 6):开发者_Go培训 sender.send(f"{100/i} {200/i}")
程序返回:
X: 100.0, Y: 200.0 sent to v3u.cn X: 50.0, Y: 100.0 sent to v3u.cn X: 33.333333333333336, Y: 66.66666666666667 sent to v3u.cn X: 25.0, Y: 50.0 sent to v3u.cn X: 20.0, Y: 40.0 sent to v3u.cn 链接丢失,进行回调 X: 100.0, Y: 200.0 sent to 重新连接v3u.cn X: 50.0, Y: 100.0 sent to 重新连接v3u.cn X: 33.333333333333336, Y: 66.6666666666编程客栈6667 sent to 重新连接v3u.cn X: 25.0, Y: 50.0 sent to 重新连接v3u.cn X: 20.0, Y: 40.0 sent to 重新连接v3u.cn
如此,我们就可以利用生成器的“状态保留”机制来控制网络链接突然断开的回调补救措施了。
所以说,协程就是一种特殊的生成器:
async def test(): pass print(type(test()))
您猜怎么着?
<class 'coroutine'>
结语
诚然,生成器和协程也并非完全是一个概念,与生成器不同的是,协程可以被另一个函数(称为调用方)恢复执行,而不是只能由生成器本身恢复执行。这使得协程可以用来实现更复杂的控制流,因为它们可以在执行时暂停并在任意时刻恢复执行。
以上就是Python3.10 Generator生成器Coroutine原生协程详解的详细内容,更多关于Python生成器原生协程的资料请关注我们其它相关文章!
精彩评论