开发者

pandas如何使用列表和字典创建 Series

目录
  • 01 使用列表创建 Series
  • 02 使用 name 参数创建 Series
  • 03 使用简写的列表创建 Series
  • 04 使用字典创建 Series
  • 05 如何使用 Numpy 函数创建 Series
  • 06 如何获取 Series 的索引和值
  • 07 如何在创建 Series 时指定索引
  • 08如何获取 Series 的大小和形状
  • 09 如何获取 Series 开始或末尾几行数据
  • 10 使用切片获取 Series 子集

前言:

Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。

为了让大家对pandas的操作更加熟练,我整理了一些关于pandas的小操作,会依次为大家展示

今天我将先为大家如何关于pandas如何使用列表和字典创建 Series

01 使用列表创建 Series

import panda编程客栈s as pd
 
ser1 = pd.Series([1.5, 2.5, 3, 4.5, 5.0, 6])
print(ser1)


Output:

0 1.5

1 2.5

2 3.0

3 4.5

4 5.0

5 6.0

dtype: float64

02 使用 name 参数创建 Series

import pandas as pd
 
ser2 = pd.Series(["India", "Canada", "Germany"], name="Countries")
print(ser2)


Output:

0 India

1 Canada

2 Germany

Name: Countries, dtype: object

03 使用简写的列表创建 Series

import pandas as pd
 
ser3 = pd.Series(["A"]*4)
print(ser3)


Output:

0 A

1 A

2 A

3 A

dtype: object

04 使用字典创建 Series

import pandas as pd
 
ser4 = pd.Series({"India": "New Delhi",
                  "Japan": "Tokyo",
                  "UK": "London"})
print(ser4)


Output:

India New Delhi

Japan Tokyo

UK London

dtype: object

05 如何使用 Numpy 函数创建 Series

import pandas as pd
import numpy as np
 
ser1 = pd.Series(np.linspace(1, 10, 5))
print(ser1)
 
ser2 = pd.Series(np.random.normal(size=5))
print(ser2)


Output:

0 1.00

1 3.25

2 5.50

编程客栈3 7.75

4 10.00

dtype: float64

0 -1.694452

1 -1.570006

2 1.713794

3 0.338292

4 0.803511

dtype: float64

06 如何获取 Series 的索引和值

import pandas as pd
import numpy as np
 
ser1 = pd.Series({"India": "New Delhi",
                  "Japan": "Tokyo",
                  "UK": "London"})
 
print(ser1.values)
print(ser1.index)
 
print("\n")
 
ser2 = pd.编程客栈Series(np.random.normal(size=5))
print(ser2.index)
print(ser2.values)


Output:

['New Delhi' 'Tokyo' 'London']

Index(['India', 'Japan', 'UK'], dtype='object')

RangeIndex(start=0, stop=5, step=1)

[ 0.66265478 -0.72222211 0.3608642 1.40955436 1.3096732 ]

07 如何在创建 Series 时指定索引

import pandas as pd
 
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
 
code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"]
 
ser1 = pd.Series(values, index=code)
 
print(ser1)


Output:

INDXxQMcFt India

CAN Canada

AUS Australia

JAP Japan

GER Germany

FRA France

dtype: object

08如何获取 Series 的大小和形状

import pandas as pd
 
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
 
code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"]
 
ser1 = pd.Series(values, index=code)
 
print(len(ser1))
 
print(ser1.shape)
 
print(ser1.size)


Output:

6

(6,)

6

09 如何获取 Series 开始或末尾几行数据

Head()函数:

import pandas as pd
 
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
 
code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"]
 
ser1 = pd.Series(values, index=code)
 
print("-----Head()-----")
print(ser1.head())
 
print("\n\n-----Head(2)-----")
print(ser1.head(2))


Output:

-----Head()-----

IND India

CAN Canada

AUS Australia

JAP Japan

GER Germany

dtype: object

-----Head(2)-----

IND India

CAN Canada

dtype: object

Tail()函数:

import pandas as pd
 
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
 
code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"]
 
ser1 = pd.Series(values, index=code)
 
print("-----Tail()-----")
print(ser1.tail())
 
print("\n\n-----Tail(2)-----")
print(ser1.tail(2))


Output:

-----Tail()-----

CAN Canada

AUS Australia

JAP Japan

GER Germany

FRA France

dtype: object

-----Tail(2)-----

GER Germany

FRA France

dtype: object

Take()函数:

import pandas as pd
 
values = ["India", "Canada", "Australia",
          "Japan", "Germany", "France"]
 
code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"]
 
ser1 = pd.Series(values, index=code)
 
print("-----Take()-----")
print(ser1.take([2, 4, 5]))


Output:

-----Take()-----

AUS Australia

GER Germany

FRA France

dtype: object

10 使用切片获取 Series 子集

import pandas as pd
 
num = [000, 100, 200, 300, 400, 500, 600, 700, 800, 900]
 
idx = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
 
series = pd.Series(num, index=idx)
 
print("\n [2:2] \n")
print(series[2:4])
 
print("\n [1:6:2] \n")
print(series[1:6:2])
 
print("\n [:6] \n")
print(series[:6])
 
print("\n [4:] \n")
print(series[4:])
 
print("\n [:4:2] \n")
print(series[:4:2www.cppcns.com])
 
print("\n [4::2] \n")
print(series[4::2])
 
print("\n [::-1] \n")
print(series[::-1])


Output:

[2:2]

C 200

D 300

dtype: int64

[1:6:2]

B 100

D 300

F 500

dtype: int64

[:6]

A 0

B 100

C 200

D 300

E 400

F 500

dtype: int64

[4:]

E 400

F 500

G 600

H 700

I 800

J 900

dtype: int64

[:4:2]

A 0

C 200

dtype: int64

[4::2]

E 400

G 600

I 800

dtype: int64

[::-1]

J 900

I 800

H 700

G 600

F 500

E 400

D 300

C 200

B 100

A 0

dtype: int64

到此这篇关于pandas如何使用列表和字典创建 Series的文章就介绍到这了,更多相关pandas使用列表和字典创建 Series内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

0

上一篇:

下一篇:

精彩评论

暂无评论...
验证码 换一张
取 消

最新开发

开发排行榜