Pytorch中torch.cat()函数举例解析
目录
- 一. torch.cat()函数解析
- 1. 函数说明
- 2. 代码举例
- 总结
一. torch.cat()函数解析
1. 函数说明
1.1 官网:torch.cat(),函数定义及参数说明如下图所示:
android1.2 函数功能
函数将两个张量(tensor)按指定维度拼接在一起,注意:除拼接维数dim数值可不同外其余维数数值需相同,方能对齐,如下面例子所示。torch.cat()函数不会新增维度,而torch.stack()函数会新增一个维度,相同的是两个都是对张量进行拼接
2. 代码举例
2.1 输入两个二维张量(dim=0):dim=0对行进行拼接
a = torch.randn(2,3) b = torch.randn(3,3) c = torch.cat((a,b),dim=0) a,b,c
输出结果如下:
(tensor([[-0.90, -0.37, 1.96], [-2.65, -0.60, 0.05]]), tensor([[ 1.30, 0.24, 0.27], [-1.99, -1.09, 1.67], [-1.62, 1.54, -0.14]]), tensor([[-0.90, -0.37, 1.96], [-2.65, -0.60, 0.05], [ 1.30, 0.24, 0.27], [-1.99, -1.09, 1.67], [-1.62, 1.54, -0.14]]))
2.2 输入两个二维张量(dim=1): dim=1对列进行拼接
a = torch.randn(2,3) b = torch.randn(2,4) c = torch.cat((a,b),dim=1) a,b,c
输出结果如下:
(tensor([[-0.55, -0.84, -1.60], [ 0.39, -0.96, 1.02]]), tensor([[-0.83, -0.09, 0.05, 0.17], [ 0.28, -0.7www.devze.com4, -0.27, -0.85]]), tensor([[-0.55, -0.84, -1.60, -0.83, -0.09, 0.05, 0.17], [ 0.39, -0.96, 1.02, 0.28, -0.74, -0.27, -0.85]]))
2.3 输入两个三维张量:dim=0 对通道进行拼接
a = torch.randn(2,3,4) b = torch.randn(1,3,4) c = torch.cat((a,b),dim=0) a,b,c
输出结果如下:
(tensor([[[ 0.51, -0.72, -0.02, 0.76], [ 0.72, 1.01, 0.39, -0.13], [ 0.37, -0.63, -2.69, 0.74]], [[ 0.72, -0.31, -0.27, 0.10], [ 1.66, -0.06, 1.91, -0.66], [ 0.34, -0.23, -0.18, -1.22]]]), tensor([[[ 0.94, 0.77, -0.41, -1.20], [-0.23, -1.03, -0.25, 1.67], [-1.00, -0.68, -0.35, -0.50]]]), tensor([[[ 0.51, -0.72, -0.02, 0.76], [ 0.72, 1.01, 0.39, -0.13], [ 0.37, -0.63, -2.69, 0.74]], [[ 0.72, -0.31, -0.27, 0.10], [ 1.66, -0.06, 1.91, -0.66], [ 0.34, -0.23, -0.18, -1.22]], [[ 0.94, 0.77, -0.41, -1.20], [-0.23, -1.03, -0.25, 1.67], [-1.00, -0.68, -0.35, -0.50]]]))
2.4 输入两个三维张量:dim=1对行进行拼接
a = torch.randn(2,3,4) b = torch.randn(2,4,4) c = torch.cat((a,b),dim=1) a,b,c
输出结果如下:
(tensor([[[-0.86, 0.00, -1.26, 1.20], [-0.46, -1.08, -0.82, 2.03], [-0.89, 0.43, 1.92, 0.49]], &编程客栈nbsp; [[ 0.24, -0.02, 0.32, 0.97], [ 0.33, -1.34, 0.76, -1.55], [ 0.38, 1.45, 0.27, -0.64]]]), tensor([[[ 0.82, 0.85, -0.30, -0.58], [-0.09, 0.40, 0.02, 0.75], [-0.70, 0.67, -0.88, -0.50], [-0.62, -1.65, -1.10, -1.39]], [[-0.85, -1.61, -0.35, -0.56], [ 0.00, 1.40, 0.41, 0.39], [-0.01, 0.04, 0.80, 0.41], [-1.21, -0.64, 1.14, 1.64]]]), tensor([[[-0.86, 0.00, -1.26, 1.20], [-0.46, -1.08, -0.82, 2.03], [-0.89, 0.43, 1.92, 0.49],  javascript; [ 0.82, 0.85, -0.30, -0.58], [-0.09, 0.40, 0.02, 0.75], [-0.70, 0.67, -0.88, -0.50], [-0.62, -1.65, -1.10, -1.39]], [[ 0.24, -0.02, 0.32, 0.97], [ 0.33, -1.34, 0.76, -1.55], [ 0.38, 1.45, 0.27, -0.64], [-0.85, -1.61, -0.35, -0.56], [ 0.00, 1.40, 0.41, 0.39], [-0.01, 0.04, 0.80, 0.41], [-1.21, -0.64, 1.14, 1.64]]]))
2.5 输入两个三维张量:dim=2对列进行拼接
a = torch.randn(2,3,4) b = torch.randn(2,3,5) c = torch.cat((a,b),dim=2) a,b,c
输出结果如下:
(tensor([[[ 0.13, -0.02, 0.13, -0.25], [ 1.42, -0.22, -0.87, 0.27], [-0.07, 1.04, -0.06, 0.91]], 开发者_Go学习 [[ 0.88, -1.46, 0.04, 0.35], [ 1.36, 0.64, 0.75, 0.39], [ 0.36, 1.13, 0.83, 0.56]]]), tensor([[[-0.47, -2.30, -0.49, -1.02, 1.74], [ 0.71, 0.89, 0.80, -0.05, -1.35], [-0.40, 0.26, -0.78, -1.50, -0.92]], [[-0.77, -0.01, 1.23, 0.70, -0.66], [ 0.28, -0.18, -0.91, 2.23, 1.14], [-1.93, -0.17, 0.15, 0.40, 0.32]]]), tensor([[[ 0.13, -0.02, 0.13, -0.25, -0.47, -2.30, -0.49, -1.02, 1编程客栈.74], [ 1.42, -0.22, -0.87, 0.27, 0.71, 0.89, 0.80, -0.05, -1.35], [-0.07, 1.04, -0.06, 0.91, -0.40, 0.26, -0.78, -1.50, -0.92]], [[ 0.88, -1.46, 0.04, 0.35, -0.77, -0.01, 1.23, 0.70, -0.66], [ 1.36, 0.64, 0.75, 0.39, 0.28, -0.18, -0.91, 2.23, 1.14], [ 0.36, 1.13, 0.83, 0.56, -1.93, -0.17, 0.15, 0.40, 0.32]]]))
总结
到此这篇关于Pytorch中torch.cat()函数举例解析的文章就介绍到这了,更多相关Pytorch中torch.cat()函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!
精彩评论